Гидролиз карбоновых кислот реакция. Реакции хлорангидридов карбоновых кислот с аммиаком

Карбоновые кислоты. Непредельные (ненасыщенные) карбоновые кислоты - соединения, в углеводородном радикале которых имеются кратные связи. В зависимости от их числа и природы различают: 1) алкеновые карболовые кислоты с общей формулой C*H2*-iCOOH, имеющие одну двойную связь; 2) алкадиеновые карбоновые кислоты с общей формулой СяНгя-зСООН, имеющие две двойные связи; 3) алкатриеновые карбоновые кислоты с общей формулой СяНгл-зСООН, имеющие три двойные связи; 4) алкиновые карбоновые кислоты с общей формулой ОД^-эСООН, имеющие одну тройную связь. Способ получения. 1. Окисление непредельных альдегидов: акролеин акриловая кислота 2. Дегидрогалогенирование галогенкарбоновых кислот: СН2-СН2-СН2-СООН + 2КОН - сн2=сн-сн2-соок+2И2о+ка 3. Дегидратация р-оксикислот: Физические свойства. Ненасыщенные карбоновые кислоты с числом атомов углерода 10 и более, имеющие ^^-конфигурацию, в отличие от предельных карбоновых кислот при обычных условиях являются жидкостями. 7/?а«оизомеры непредельных карбоновых кислот с любым числом атомов углерода являются кристаллическими веществами. . В табл. 29.3 указаны физические свойства некоторых представителей непредельных карбоновых кислот. Таблица 29.3. Физические свойства некоторых представителей непредельных карбоновых кислот Название кислоты Формула Температура плавления, °С Температура дпвниж, °С Акриловая С2Н3-СООН 12,1 140,9 Пропиоловая С2Н - СООН 17,6 144 Кро тоновая (тране- из ом ер) С3Н5-СООН 71,4-71,7 185 Название кислоты Формул» Температура плавления, °С Температура X) Изокро тоновая (tfuc- изомер) С3Н5-СООН 15,5 169 Олеиновая (цис-изомер) С17Н33СООН 13,4 228/15 Эландиновая (транс-изомер) С17Н33СООН 44 234/15 Линолевая Ci7H3iCOOH -5 149Д Линоленовая C,7H29COOH -11,3 184/4 Последние четыре кислоты кипят при низких давлениях (указаны в мм рт. ст. через дробь). Химические свойства. Наличие в углеводородном радикале двойных и тройных связей влияет на силу карбоновых кислот. Если у пропионовой кислоты константа диссоциации К- = 1,34 Ю, то у акриловой кислоты она приблизительно в 4 раза больше (#=5,6* 10"5), а у пропиоловой кислоты она больше в тысячу раз (К= 1,35 ИГ1). Наличие кратных связей в молекулах непредельных карбоновых кислот обусловливает их способность вступать в реакции присоединения и полимеризации и особенности протекания реакций окисления. 1. Реакции присоединения: 2. Реакции полимеризации: соон соон 3. Реакции окисления: а) при осторожном окислении образуются диоксикислоты акриловая диоксипропноновая кислота кислота б) при энергичном окислении происходит разрыв молекулы по месту кратной связи с образованием смеси одноосновной и двухосновной кислот: СНз-СН«СН-СООН гротоповая кислота СН эСООН+НООС - СООН уксусная щавелевая кислота кислота [О} Отдельные представители. Акриловая (пропеновая) кислота СН2=СН - СООН представляет собой жидкость с резким запахом, смешивается с водой во всех отношениях. Широко используется для получения различных полимеров. Олеиновая кислота С8Н,7СН=СН - (СН^-СООН содержится в виде глидеридов в большинстве растительных масел и животных жиров, получается их гидролизом, представляет собой бесцветную маслянистую жидкость, легко окисляющуюся на воздухе, растворимую в органических растворителях и несме-шивающуюся с водой. Используется для производства парфюмерных и косметических средств, пеноочистителей, смачивателей и пластификаторов. Линолевая кислота СН3 - (СН2)3 - (СН2 - СН - СН)2 - (СН2)7 -- СООН. Содержится в виде глицеридов в растительных маслах, получается их гидролизом, представляет собой светло-желтую жидкость, хорошо растворимую в органических растворителях и нерастворимую в воде. Легко окисляется и полимеризуется на воздухе. Линоленовая кислота - маслянистая жидкость светло-желтого цвета, нерастворимая в воде и хорошо растворимая в органических растворителях. Содержится в виде глицеридов в растительных маслах и получается в результате их гидролиза. Легко окисляется и полимеризуется. Линолевая и линоленовая кислоты в организме человека и животных не синтезируются, но необходимы для жизнедеятельности, в организм поступают с пищей, поэтому они относятся к так называемым незаменимым жирным кислотам.

Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих – карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН – формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса “-оат” (СООК)2- этандиот калия.

Классификация карбоновых кислот

Карбоновые кислоты классификация .

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты – соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов – маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами , их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура, чем спиртам.

Существует несколько способов получения карбоновых кислот .

При химических реакциях проявляются следующие свойства:

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве , а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную – как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом .

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине , в пчеловодстве, а также в качестве консервантов.

Уксусная – жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, – соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

Основные методы следующие.

1. Окисление первичных спиртов.

1-я стадия – образование альдегидов.

СН 3 СН 2 ОНCН 3 СНО

2-я стадия – получение целевого продукта.

CН 3 СНО
CН 3 СООН

2. Гидролиз нитрилов.

RCN + 2HOH  RCOOH + NH 3

3. Оксосинтез из непредельных углеводородов.

СН 3 СН= СН 2 + СО + Н 2 О
CН 3 СН 2 СН 2 СООН

В процессе оксосинтеза чаще всего молекулы получающихся продуктов содержат на один атом углерода больше, чем исходных веществ.

Химические свойства карбоновых кислот

1. Реакции с участиием водорода карбоксильной группы.

1.1. Некоторые кислоты существенно диссоциируют с отщеплением катиона Н + .

НСООННСОО  + Н +

Как отмечалось ранее, для карбоновых кислот характерны относительно высокие константы диссоциации. Для муравьиной кислоты имеем:

,

НСОО  формиат-ион; СН 3 СОО  ацетат-ион.

1.2. Взаимодействие с металлами

2RCOOH + Mg  (RCOO) 2  Mg + H 2

1.3. Взаимодействие со щелочами.

RCOOH + NaOH  RCOONa + H 2 O

1.4. Взаимодействие с основными оксидами.

2СН 3 СООН +MgO(СН 3 СОО) 2 Mg+ Н 2 О

1.5. Взаимодействие с солями более слабых (близких по силе) кислот.

2СН 3 СООН + Na 2 CO 3  2СН 3 СООNa + H 2 CO 3

2. Реакции с участием карбоксильной группы.

2.1. Реакции с галогенидами фосфора.

2.2. Реакции с аммиаком. При смешивании кислоты и аммиака вначале образуется соль аммония, которую затем подвергают сухой перегонке:

Частный случай.

2.3. Реакции со спиртами

2.4. Димеризация с образованием ангидридов кислот.

Частный случай:

3. Реакции с участием водорода -углеродного атома.

3.1. Галогенирование.

Хлорирование, как частный случай галогенирования.

4. Реакции окисления.

НСООН + [O]  HOCOOH  H 2 O + CO 2 

Свойства отдельных представителей гомологического ряда

Муравьиная кислота НСООН содержится в хвое, крапиве, в выделениях муравьев. Это – бесцветная жидкость с резким неприятным запахом. Вызывает ожог кожи, смешивается с водой, эфирами, спиртами в любых отношениях. d= 1,21 г/см 3 .

Уксусная (этановая, метилкарбоновая) кислота СН 3 СООН. При обычной температуре – бесцветная жидкость с резким запахом. Смешивается с водой, этанолом, диэтиловым и диметиловым эфирами, бензолом в любых отношениях. Нерастворима вCS 2 . Уксусная эссенция – 70–80 %-ный раствор СН 3 СООН. Пищевой уксус – 5 %-ный раствор. Т пл = 17С, Т кип = 118,1С,d= 1,05 г/см 3 . Применяется при крашении, в кожевенной промышленности, в пищевой промышленности, для получения сложных эфиров (ацетатов).

Уксусный ангидрид. Т пл =73,1С, Т кип = 139,5С. Обладает резким запахом, растворим в бензоле, диметиловом эфире, хлороформе. Дипольный момент2,82D,H 2 O1,84D. В больших масштабах используется для получения ацетата целлюлозы, фармацевтических препаратов.

Задачи по теме

Задача 1. Рассчитать массовую долю соли в растворе одноосновной предельной карбоновой кислоты с его исходной массой 200 г и массовой долей водорода в кислоте 8,1 %, если соль получена при поглощении раствором 5,6 л аммиака (условия нормальные).

Запишем уравнение реакции.

С k H 2k+1 COOH + NH 3 = С k H 2k+1 COONH 4 . (1)

Установим молекулярную формулу кислоты.

;
;

200k+ 200 = 113,4k+ 372,6;
.

Уточненное уравнение реакции имеет вид:

С 2 H 5 COOH+NH 3 = С 2 H 5 COONH 4 ,

из которого следует:

n(NH 3) =n(С 2 H 5 COONH 4);

m(С 2 H 5 COONH 4) = n(С 2 H 5 COONH 4)  M(С 2 H 5 COONH 4) =

N(NH 3)  M(С 2 H 5 COONH 4) =

m(NH 3) = n(NH 3)  M(NH 3) =

г.

m 2 (раствора) =m 1 (раствора) +m(NH 3);

m 2 (раствора) = 200 + 4,25 = 204,25 г.

Задача 2. При взаимодействии смеси одноосновных карбоновых кислот общей массой 50 г с избытком оксида серебра выделилось 16,8 л газа (условия нормальные). Затем через полученный раствор пропустили избыток аммиака. Найти массу образовавшейся соли, если приведенная массовая доля кислорода в эквимолярной смеси кислот равна 60,4 %.

Запишем уравнение реакции взаимодействия исходных веществ с оксидом серебра, учтя, что из предельных одноосновных карбоновых кислот с ним реагирует только муравьиная кислота.

НСООН + Ag 2 O = CO 2 + H 2 O + 2Ag (1)

Для остальных

С k H 2 k +1 COOH+Ag 2 Oреакция не идет. (2)

С использованием уравнения реакции (1) найдем массу муравьиной кислоты:

n(НСООН) =n(CO 2);m(НСООН) =n(НСООН)M(НСООН) =

N(CO 2)M(НСООН) =
г.

Найдем молекулярную формулу неизвестной карбоновой кислоты.

;
;

6400 = 845,6k+ 5556,8;
.

Молекулярная формула кислоты СН 3 СООН.

В результате взаимодействия НСООН с оксидом серебра в растворе остается только уксусная кислота, которая при взаимодействии с избытком аммиака и образует соль по уравнению реакции:

СН 3 СООН+NH 3 = СH 3 COONH 4 . (3)

m(СН 3 СООН) =m(смеси) –m(HCOOH) = 50 – 34,5 = 15,5 г.

Из уравнения реакции (3) имеем:

n(СН 3 СООН) =n(СH 3 COONH 4);

m(СH 3 COONH 4) = n(СH 3 COONH 4)  M(СH 3 COONH 4) =

Тема: Карбоновые кислоты

План лекции:

  1. Понятие о карбоновых кислотах.
  2. Гомологический ряд карбоновых кислот.
  3. Одноосновные предельные карбоновые кислоты.
  4. Изомерия и номенклатура.
  5. Нахождение в природе.
  6. Физические и химические свойства карбоновых кислот.

Карбоновые кислоты очень распространены в быту и промышленности. Уксусная кислота – одна из первых кислот, которая была известна человеку. Уже в древние времена она была выделена из уксуса, а последний получался при скисании вина.

С карбоновыми кислотами мы уже встречались при изучении химических свойств альдегидов. В молекулах карбоновых кислот содержится характерная группировка атомов – карбоксильная группа.

Карбоновые кислоты – это органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом или водородным атомом.

Карбоновые кислоты классифицируют: а) в зависимости от числа карбоксильных групп в молекуле на одноосновные, двухосновные и многоосновные; б) в зависимости от природы радикала на предельные, непредельные и ароматические.

Одноосновные предельные карбоновые кислоты. Одноосновным предельным карбоновым кислотам можно дать такое определение:

К основным предельным карбоновым кислотам относятся органические вещества, в молекулах которых имеется одна карбоксильная группа, связанная с радикалом предельного углеводорода или с атомами водорода.

Строение молекул карбоновых кислот можно установить теми же методами, которые были рассмотрены при изучении альдегидов.

Атом водорода в гидроксильной группе карбоновых кислот гораздо более подвижен, чем в молекулах спиртов. Поэтому растворимые в воде карбоновые кислоты отщепляют ионы водорода и окрашивают лакмус в красный цвет:

RCOOH ↔ RCOO - + H +

Изомерия и номенклатура. Изомерия предельных одноосновных карбоновых кислот аналогична изомерии альдегидов.

Чаще всего употребляются исторически сложившиеся названия кислот (муравьиная, уксусная и т.д.). По международной номенклатуре их образуют от названия соответствующих углеродов с прибавлением окончания –овая и слова «кислота», например: метановая кислота .

Нахождение в природе

Муравьиная кислота содержится в муравьях, в крапиве и хвое ели. Ожог крапивой – результат действия муравьиной кислоты. Масляная (бутановая) кислота входит прогорклого масла, а валериановая (пентановая) кислота содержится в корнях валерианы.

Получение

В лаборатории карбоновые кислоты, как и не органические, можно получить из их солей, действуя на них серной кислотой при нагревании:

2CH 3 COONa + H 2 SO 4 → Na 2 SO 4 + 2CH 3 COOH

Физические свойства

Низшие карбоновые кислоты – жидкости с острым запахом, хорошо растворимые в воде. С повышением относительной молекулярной массы растворимость кислот в воде уменьшается, а температура кипения повышается. Высшие кислоты начиная с пеларгоновой (ионановой) CH 3 –(CH 2) 7 –COOH, – твердые вещества, без запаха, нерастворимые в воде.

Химические свойства.

Общие свойства карбоновых кислот аналогичны соответствующим свойствам неорганических кислот.

Карбоновые кислоты обладают и некоторыми специфическими свойствами, обусловленными наличием в их молекулах радикалов. Так, например, уксусная кислота реагирует с хлором:

Cl 2 + CH 3 COOH → ClCH 2 COOH + HCl

Муравьиная кислота по химическим свойствам от других карбоновых кислот.

1. Из одноосновных кислот муравьиная является самой сильной кислотой.

2. Из-за особенности строения молекул муравьиная кислота подобно альдегидам легко окисляется (реакция серебряного зеркала):

HCOOH + Ag 2 O → HOCOOH + 2Ag↓

HOCOOH ↔ H 2 O + CO 2

3. При нагревании с концентрированной серной кислотой муравьиная кислота отщепляет воду и образуется оксид углерода (II):

HCOOH → H 2 O + CO

Эта реакция используется для получения оксида углерода (II) в лаборатории.

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.