Область применения ультразвука. Ультразвук

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком. Ультразвук сильно поглощается газами и во много раз слабее - твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны. Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение. Все это позволяет широко использовать ультразвук в технике.

Описанные свойства ультразвука используются в эхолоте - приборе для определения глубины моря (рис. 25.11). Корабль снабжают источником и приемником ультразвука определенной частоты. Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде , с помощью формулы (25.3) определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на пути корабля в горизонтальном направлении. При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например, летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины.

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость . Это используют для ускорения самых различных технологических процессов (например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий - взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волнами или инфразвуком. Они также не вызывают звуковых ощущений, Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении. Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.

Энциклопедичный YouTube

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты , дельфины , летучие мыши , грызуны , долгопяты).

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон .

Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку.

Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Сирена - механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.

Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей (осаждение туманов), разрушение пены, ускорение процессов массо- и теплообмена и т. д.).

Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией , ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.

Ультразвук обладает следующими эффектами:

  • противовоспалительным, рассасывающим действиями;
  • анальгезирующим, эспазмолитическим действиями;
  • кавитационным усилением проницаемости кожи. [ ]

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. [ ] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоту и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учёта воды и теплоносителя с 1960-х годов в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднён, при соединении разнородных металлов, металлов с прочными оксидными плёнками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.), при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Медицинская физика Подколзина Вера Александровна

18. Ультразвук и его применение в медицине

Ультразвук представляет собой высокочастотные механические колебания частиц твердой, жидкой или газообразной среды, неслышимые человеческим ухом. Частота колебаний ультразвука выше 20 000 в секунду, т. е. выше порога слышимости.

Для лечебных целей применяется ультразвук с частотой от 800 000 до 3 000 000 колебаний в секунду. Для генерирования ультразвука используются устройства, называемые ультразвуковыми излучателями.

Наибольшее распространение получили электромеханические излучатели. Применение ультразвука в медицине связано с особенностями его распространения и характерными свойствами. По физической природе ультразвук, как и звук, является механической (упругой) волной. Однако длина волны ультразвука существенно меньше длины звуковой волны. Чем больше различные акустические сопротивления, тем сильнее отражение и преломление ультразвука на границе разнородных сред. Отражение ультразвуковых волн зависит от угла падения на зону воздействия – чем больше угол падения, тем больше коэффициент отражения.

В организме ультразвук частотой 800-1000 кГц распространяется на глубину 8-10 см, а при частоте 2500–3000 Гц – на 1,0–3,0 см. Ультразвук поглощается тканями неравномерно: чем выше акустическая плотность, тем меньше поглощение.

На организм человека при проведении ультразвуковой терапии действуют три фактора:

1) механический – вибрационный микромассаж клеток и тканей;

2) тепловой – повышение температуры тканей и проницаемости клеточных оболочек;

3) физико-химический – стимуляция тканевого обмена и процессов регенерации.

Биологическое действие ультразвука зависит от его дозы, которая может быть для тканей стимулирующей, угнетающей или даже разрушающей. Наиболее адекватными для лечебно-профилактических воздействий являются небольшие дозировки ультразвука (до 1,2 Вт/см2 ), особенно в импульсном режиме. Они способны оказывать болеутоляющее, антисептическое (противомикробное), сосудорасширяющее, рассасывающее, противовоспалительное, десенсибилизирующее (противоаллергическое) действие.

В физиотерапевтической практике используются преимущественно отечественные аппараты трех серий: УЗТ-1, УЗТ-2, УЗТ-3.

Ультразвук не применяется на область мозга, шейных позвонков, костные выступы, области растущих костей, ткани с выраженным нарушением кровообращения, на живот при беременности, мошонку. С осторожностью ультразвук применяют на область сердца, эндокринные органы.

Различают непрерывный и импульсный ультразвук. Непрерывным ультразвуком принято называть непрерывный поток ультразвуковых волн. Этот вид излучения используется главным образом для воздействия на мягкие ткани и суставы. Импульсный ультразвук представляет собой прерывистое излучение, т. е. ультразвук посылается отдельными импульсами через определенные промежутки времени.

Из книги Физики продолжают шутить автора Конобеев Юрий

П.А.У.Л.И. и его применение В. Вайскопф Получено в июле 1932 года, частично рассекречено в июле 1951 года Эта работа в течение 25 лет была засекречена Швейцарской комиссией по атомной энергии. Недавно получено сообщение, что в СССР создана такая же машина, но с радиусом в

Из книги Физики шутят автора Конобеев Юрий

П. А. У. Л. И. и его применение В. Вайскопф (Получено в июле 1932 года, частично рассекречено в июле 1951 года) Эта работа в течение 25 лет была засекречена Швейцарской комиссией по атомной энергии. Недавно получено сообщение, что в СССР создана такая же [машина, но с радиусом в

Из книги Медицинская физика автора Подколзина Вера Александровна

43. Классификация частотных интервалов, принятая в медицине Из теории Максвелла вытекает, что различные электромагнитные волны, в том числе и световые, имеют общую природу. В связи с этим целесообразно представить всевозможные электромагнитные волны в виде единой

Из книги Физическая химия: конспект лекций автора Березовчук А В

ЛЕКЦИЯ № 14. Применение теоретической и прикладной электрохимии 1. Прикладная электрохимия Прикладная электрохимия – часть электрохимии, которая рассматривает электрохимические реакции с точки зрения применения их для практических целей – получения электрической

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

ПРИМЕНЕНИЕ ТОРИЯ, ПРОТАКТИНИЯ ИЛИ ДРУГИХ МАТЕРИАЛОВ 2.21. Все предыдущие рассуждения концентрировались вокруг того или иного использования урана; однако, известно, что как торий, так и протактиний также подвергаются делению при бомбардировке быстрыми нейтронами. Большим

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

ВОЕННОЕ ПРИМЕНЕНИЕ 2.35. Если все атомы килограмма U-235 подвергнутся делению, то освобожденная при этом энергия будет эквивалентна энергии, получающейся при взрыве 20 000 тонн тринитротолуола. Если критические размеры бомбы окажутся практически осуществимыми - в пределах,

Из книги автора

ЭКСПЕРИМЕНТЫ С ПЕРЕМЕННЫМИ ТОКАМИ ОЧЕНЬ ВЫСОКОЙ ЧАСТОТЫ И ИХ ПРИМЕНЕНИЕ К МЕТОДАМ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ* Нет предмета более увлекательного, более достойного изучения, чем природа. Понять этот великий механизм, открыть действующие силы и законы, которые им управляют

Ультразвуком называют упругие волны (волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил), частота которых лежит за пределами слышимого для человека диапазона - приблизительно от 20 кГц и выше.

Полезные особенности ультразвуковых волн

И хотя физически ультразвук имеет ту же природу, что и слышимый звук, отличаясь лишь условно (более высокой частотой), именно благодаря более высокой частоте ультразвук оказывается применим по ряду полезных направлений. Так, при измерении скорости ультразвука в твердом, жидком или газообразном веществе, получают очень незначительные погрешности при мониторинге быстропротекающих процессов, при определении удельной теплоемкости (газа), при измерении упругих постоянных твердых тел.

Высокая частота при малых амплитудах дает возможность достигать повышенных плотностей потоков энергии, ибо энергия упругой волны пропорциональна квадрату ее частоты. Кроме того ультразвуковые волны, используемые правильным образом позволяют получить ряд совершенно особенных акустических эффектов и явлений.

Одно из таких необычных явлений - акустическая кавитация, возникающая при направлении мощной ультразвуковой волны в жидкость. В жидкости, в поле действия ультразвука, крохотные пузырьки пара или газа (субмикроскопического размера) начинают расти до долей миллиметров в диаметре, при этом пульсируя с частотой волны и схлопываясь в положительной фазе давления.

Захлопывающийся пузырек порождает локально высокий импульс давления, измеряемый тысячами атмосфер, становясь источником ударных сферических волн. Акустические микропотоки, образующиеся возле таких пульсирующих пузырьков, возымели полезное применение для получения эмульсий, очистки деталей и т. д.

Фокусируя ультразвук, получают звуковые изображения в акустической голографии и в системах звуковидения, концентрируют звуковую энергию с целью формирования направленных излучений с заданными и управляемыми характеристиками направленности.

Используя ультразвуковую волну в качестве дифракционной решетки для света, можно для тех или иных целей изменять показатели преломления света, поскольку плотность в ультразвуковой волне, как и в упругой волне в принципе, периодически изменяется.

Наконец, особенности, связанные со скоростью распространения ультразвука. В неорганических средах ультразвук распространяется со скоростью, зависящей от упругости и плотности сред.

Что касается сред органических, то здесь на скорость влияют границы и их характер, то есть фазовая скорость зависит от частоты (дисперсия). Ультразвук затухает с удалением фронта волны от источника - фронт расходится, ультразвук рассеивается, поглощается.

Внутреннее трение среды (сдвиговая вязкость) приводит к классическому поглощению ультразвука, кроме того релаксационное поглощение для ультразвука превосходит классическое. В газе ультразвук затухает сильнее, в твердых и в жидких телах - гораздо слабее. В воде, например, затухает в 1000 раз медленнее чем в воздухе. Так, промышленные области применения ультразвука почти целиком связаны с твердыми и жидкими телами.

Ультразвук в эхолокации и гидролокации (пищевая, оборонная, добывающая промышленности)

Первый прообраз гидролокатора был создан для предотвращения столкновений судов со льдинами и айсбергами, русским инженером Шиловским вместе с французским физиком Ланжевеном в далеком 1912 году.

Прибор использовал принцип отражения и приема звуковой волны. Сигнал направлялся в определенную точку, а по задержке ответного сигнала (эхо), зная скорость звука, можно было судить о расстоянии до отразившего звук препятствия.

Шиловский и Ланжевен стали глубоко исследовать гидроакустику, и вскоре создали прибор, способный обнаруживать вражеские подводные лодки в Средиземном море на расстоянии до 2 километров. Все современные гидролокаторы, в том числе военные, - потомки того самого прибора.

Современные эхолоты для исследования рельефа дна состоят из четырех блоков: передатчика, приемника, преобразователя и экрана. Функция передатчика - отправлять вглубь воды ультразвуковые импульсы (50 кГц, 192 кГц или 200 кГц), которые распространяются в воде со скоростью 1,5 км/с, где отражаются от рыб, камней, других предметов и дна, затем эхо достигает приемника, обрабатывается преобразователем и результат отображается на дисплее в удобной для зрительного восприятия форме.

Ультразвук в электронной и электроэнергетической промышленности

Без ультразвука не обходятся многие области современной физики. Физика твердого тела и полупроводников, а также акустоэлектроника, во многом тесно сопряжены с ультразвуковыми методами исследований, - с воздействиями на частоте от 20 кГц и выше. Особенное место занимает здесь акустоэлектроника, где ультразвуковые волны взаимодействуют с электрическими полями и электронами внутри твердых тел.

Объемные ультразвуковые волны используются на линиях задержки и в кварцевых резонаторах с целью стабилизации частоты в современных радиоэлектронных системах обработки и передачи информации. Поверхностные акустические волны занимают особое место в полосовых фильтрах для телевидения, в синтезаторах частот, в устройствах переноса заряда акустической волной, в устройствах памяти и считывания изображений. Наконец, корреляторы и конвольверы - используют в своей работе поперечный акустоэлектрический эффект.

Радиоэлектроника и ультразвук

Для задержки одного электрического сигнала относительно другого полезны ультразвуковые линии задержки. Электрический импульс преобразуется в импульсное механическое колебание ультразвуковой частоты, которое распространяется многократно медленнее электромагнитного импульса; затем механическое колебание обратно преобразуется в электрический импульс, и получается сигнал, задержанный относительно подаваемого изначально.

Для такого преобразования обычно применяют пьезоэлектрические или магнитострикционные преобразователи, поэтому и линии задержки называются пьезоэлектрическими или магнитострикционными.


В пьезоэлектрической линии задержки электрический сигнал подается на кварцевую пластинку (пьезоэлектрический преобразователь), соединенную жестко с металлическим стрежнем.

К другому концу стержня присоединен второй пьезоэлектрический преобразователь. Входной преобразователь принимает сигнал, создает механические колебания, распространяющиеся по стрежню, и когда колебания достигают через стержень второго преобразователя, вновь получается электрический сигнал.

Скорость распространения колебаний по стержню сильно меньше чем просто у электрического сигнала, поэтому сигнал, прошедший через стержень задерживается относительно подаваемого на величину, связанную с разностью скоростей электромагнитных и ультразвуковых колебаний.

Магнитострикционная линия задержки сдержит входной преобразователь, магниты, звукопровод, выходной преобразователь и поглотители. Входной сигнал подается на первую катушку, в стержневом звукопроводе из магнитострикционного материала начинаются колебания ультразвуковой частоты - механические колебания - магнит создает здесь постоянное подмагничивание в зоне преобразования и начальную магнитную индукцию.

Ультразвук в обрабатывающей промышленности (резка и сварка)

Между источником ультразвука и деталью располагают абразивный материал (кварцевый песок, алмаз, камень и т. д.). Ультразвук действует на частицы абразива, которые в свою очередь с частотой ультразвука ударяют о деталь. Материал детали под воздействием огромного количества крохотных ударов абразивных зерен разрушается, - так происходит обработка.

Резание складывается с движением подачи, при этом продольные колебания резания являются основными. Точность ультразвуковой обработки зависит от зернистости абразива, и достигает 1 мкм. Таким путем делают сложные вырезы, необходимые в изготовлении металлических деталей, шлифовке, гравировке и сверлении.


Если необходимо сварить разнородные металлы (или даже полимеры) или толстую деталь объединить с тонкой пластиной - на помощь опять же приходит ультразвук. Это так называемая . Под действием ультразвука в области сварки металл становится очень пластичным, детали можно очень легко вращать во время соединения под любыми углами. И стоит отключить ультразвук - детали мгновенно соединятся, схватятся.

Особенно примечательно, что сварка происходит при температуре ниже температуры плавления деталей, и соединение их происходит фактически в твердом состоянии. Но так сваривают и стали, и титан, и даже молибден. Тонкие листы свариваются проще всего. Данный метод сварки не предполагает особой подготовки поверхности деталей, это касается и металлов и полимеров.

Ультразвук в металлургии (ультразвуковая дефектоскопия)

Ультразвуковая дефектоскопия является одним из эффективнейших методов контроля качества металлических деталей без разрушения. В однородных средах ультразвук распространяется без быстрых затуханий направленно, и на границе сред ему свойственно отражение. Так металлические детали проверяют на наличие внутри них раковин и трещин (граница сред воздух-металл), выявляют повышенную усталость металла.

Ультразвук способен проникнуть в деталь на глубину до 10 метров, причем размеры выявляемых дефектов имеют порядок 5 мм. Существуют: теневой, импульсный, резонансный, структурного анализа, визуализации, - пять методов ультразвуковой дефектоскопии.


Простейший метод - теневая ультразвуковая дефектоскопия, данный метод строится на ослаблении ультразвуковой волны, когда она наталкивается на дефект при прохождении сквозь деталь, поскольку дефект создает ультразвуковую тень. Работают два преобразователя: первый излучает волну, второй - принимает.

Данный метод малочувствителен, дефект обнаруживается лишь в случае, если его влияние изменяет сигнал минимум на 15%, к тому же нельзя определить глубину, где в детали находится дефект. Более точные результаты дает импульсный ультразвуковой метод, он показывает еще и глубину.

Ультразвук широко применяется в косметологии и физиотерапии, и представляет собой высокочастотные механические колебания частиц среды, которые распространяются в ней в виде попеременных сжатий и разрежений вещества. Частота ультразвуковых колебаний лежит в неслышном акустическом диапазоне (выше 16 кГц).

В физиотерапии и косметологии используют ультразвук частотой 24-42 кГц, 800-900 кГц или около 3000 кГц.

Основными физическими параметрами и величинами , которые используются для оценки свойств ультразвука, являются частота и интенсивность ультразвуковых колебаний.

Частота ультразвука

Частота колебаний - это число чередований сжатий и разряжений в единицу времени. Единица измерения в СИ - герц (Гц). 1 Гц - одно колебание в секунду. В терапевтической практике ультразвук используют в диапазоне частот 800-3000 кГц (1 кГц=1000 Гц). Выбор частоты ультразвука зависит от глубины расположения органов и тканей, подлежащих воздействию. При поверхностном их расположении применяют ультразвук высокой частоты (3 МГц), при более глубоком - более низкие частоты.

Глубина проникновения ультразвука

Глубина проникновения УЗ-колебаний зависит от их частоты . Чем больше частота колебаний, тем меньше глубина проникновения и наоборот.

  • При частоте 1600-3000 кГц ультразвук проникает на глубину 1-1,5 см (поглощается кожей).
  • при частоте 800-900 кГц - на 4-5 см.
  • при частоте 20-45 кГц проникает на глубину 8-14 см.

При этом следует иметь ввиду, что глубина проникновения веществ при фонофорезе значительно меньше, чем глубина проникновения ультразвуковых волн (колебаний).

Интенсивность ультразвука

Интенсивность ультразвуковых колебаний - это количество энергии, проходящее через 1 см² площади излучателя аппарата в течение 1 секунды. Единица измерения в системе СИ - Вт/см². Применяемую в физиотерапевтической и косметологической практике интенсивность ультразвуковых колебаний условно подразделяют на:

  • малую (0,05-0,4 Вт/см²)
  • среднюю (0,5-0,8 Вт/см²)
  • большую (0,9-1,2 Вт/см²)

малая интенсивность оказывает стимулирующее действие

средняя - коррегирующее действие (противовоспалительное, обезболивающее)

большая - рассасывающее действие.

Из новых методик интересна так называемая «ультразвуковая липосакция» - применение низкочастотного (20-45 кГц) ультразвука со сверхбольшой интенсивностью - до 3 Вт/см².

Скорость распространения ультразвука в различных средах

Скорость распространения ультразвуковых колебаний в тканях зависит от плотности среды и величины акустического сопротивления. Чем плотнее ткань, тем больше скорость распространения ультразвука. Так, в воздухе она равна 330 м/с, в воде - 1500 м/с, в сыворотке крови - 1060-1540 м/с, в костной ткани - 3350 м/с. Поэтому в неоднородных средах, какими являются ткани организма, распространение ультразвука происходит неравномерно. Таким образом, максимум поглощения ультразвуковой энергии наблюдается в костной ткани, на границе разных тканей, а также на внутренних мембранах клеток.