Ультрафиолет: невидимое излучение, помогающее нам видеть. Ультрафиолетовые, инфракрасные и видимые лучи света

Ведущий научный сотрудник лаборатории обработки сенсорной информации Вадим Максимов, ведущий автор исследования, опубликованного в престижном британском журнале Proceedings of the Royal Society B , рассказал РИА Новости о том, в каких цветах видят мир птицы, рыбы, люди и насекомые.

Цвета, которых нет

Разных цветов на самом деле не существует — нет такого физического свойства. Красные, зеленые, синие предметы всего лишь отражают свет с немного разной длиной волны. Цвета "видит" уже наш мозг, получая сигнал от зрительных рецепторов, "настроенных" на определенную длину волны.

Способность различать цвета зависит от числа типов таких рецепторов в сетчатке глаза и их "настройки". Рецепторы, отвечающие за цветное зрение, называются колбочками, но существует также "черно-белый канал" — палочки. Они намного чувствительнее, благодаря им мы можем ориентироваться в сумерках, когда колбочки уже не работают. Но и различать цвета в это время мы не можем.

Что видят люди…

Стоит неправильно выбрать цвета для домашних помещений и на кухне захочется спать, в спальне - танцевать, а в ванной - есть и часами беседовать. Инструкция, которая позволит избежать этих ошибок и гармонично оформить интерьер, - в инфографике РИА Новости.

Большинство млекопитающих, в том числе собаки, обладают двумя типами колбочек — коротковолновыми (с максимумом чувствительности к излучению с длиной волны 420 нанометров) и длинноволновыми (550 нанометров). Однако у человека и у всех приматов Старого света три типа колбочек и «трехмерное» цветовое зрение. Колбочки человека настроены на 420, 530 и 560 нанометров — мы воспринимаем их как синий, зеленый и красный цвета.

"Но 2% мужчин — тоже дихроматы, их называют "цветнослепые". На самом деле они не цветнослепые, у них просто есть только два типа колбочек — коротковолновая и одна из двух длинноволновых. Они видят цвета, но хуже — не различают красный и зеленый. Это и есть дальтоники", — сказал Максимов.

Ненужное цветовое зрение

Интересные факты из жизни собачьей 21 июня российские кинологи и их подопечные отмечают свой профессиональный праздник. Интересно, что использовать собак в качестве сыщиков в России начали еще в 1906 году, а вот одомашнивание этого вида животных началось приблизительно 10 тысяч лет назад.

Зрение собак ученые исследовали с конце 19 века. В 1908 году ученик Павлова Леон Орбели, изучавший условные рефлексы у собак, доказал почти полное отсутствие цветового зрения у собак. Однако в середине 20 века американские ученые обнаружили, что у собак в сетчатке присутствуют два типа колбочек, "настроенных" на 429 и 555 нанометров, хотя и в небольшом числе — лишь 20% от общего числа фоторецепторов.

"Собаки могут видят цвета примерно так же, как дальтоники. Американцы, которые обнаружили приемники в сетчатке, видели, что собаку можно научить различать цвета. Но они все равно делали вывод, что в жизни собака скорее всего не использует цветовое зрение, поскольку собаки существенную часть жизни бодрствует в сумерки, когда колбочки не работают", — сказал Максимов.

Однако он и его коллеги в эксперименте смогли доказать, что собаки действительно не только технически способны различать цвета, но и использовать это умение в жизни. В эксперименте ученые помешали пищу в закрытой и непрозрачной для запахов коробке под листами бумаги, окрашенной в светло-синий, темно-синий, светло-желтый и темно-желтый цвета.

"А потом мы взяли и поменяли цветности этих листов. И вдруг оказалось, что собаки идут не на светлую, как раньше, а на темную бумагу, но с тем же цветом. Оказалось, что для нее важна не яркость, а цвет, то есть они не только могут различать цвета, но и пользуются этим на практике", — говорит ученый.

Четырехмерное зрение

Акулы могут быть дальтониками, считают ученые Акулы, возможно, не различают цветов, как и многие морские млекопитающие, хотя их родственники, например, скаты, обладают цветным зрением, пишет группа австралийских ученых в статье, опубликованной в журнале Naturwissenschaften.

Рекордсмены по цветному зрению — рыбы, птицы и рептилии. Большинство видов этих животных — тетрахроматы, в их сетчатке присутствуют четыре типа колбочек, а у тропических раков-богомолов — 16 типов приемников.

В частности, вьюрки обладают колбочками, настроенными на ультрафиолет (370 нанометров), синий (445 нанометров), зеленый (508 нанометров) и красный (565 нанометров) цвета. "При этом птицы плохо различают яркость. Черное от белого они отличают, но оттенки серого — отказываются. И их совсем нельзя научить, если стимулы отличаются не только яркостью, но и цветом. Они "цепляются" за цвет", — сказал Максимов.

Зато птицам доступен неведомый человеку ультрафиолетовый цвет. Максимов рассказал об экспериментах с полевыми воробьями, которых учили различать листы бумаги, выкрашенные мелом и цинковыми белилами в разные оттенки серого.

"Цинковые белила поглощают ультрафиолет, а мел — нет. Для человека это одинаковый белый цвет. Приучаем птиц летать на цинковые светлые листы, потом "цинковую" бумажку делаем темной, а "меловую" делаем светлой. И видим, что птица летала на светлую бумажку, а теперь начинает летать на темную — именно потому, что она видит "ультрафиолетовый" цвет", — отметил собеседник агентства.

Предела нет

Строго говоря, никакой четкой границы видимости для рецепторов не существует, просто по мере удаления от "своей" длины волны, они становятся все менее и менее чувствительными, нужна все более высокая яркость, чтобы "разбудить" рецептор, говорит ученый.

"Когда экспериментируют со зрением, по мере движения в стороны от видимого диапазона чувствительность падает экспоненциально, но сколько вы не будете двигаться в инфракрасную или ультрафиолетовую область, она остается ненулевой", — отметил Максимов.

По его словам, в особых условиях, в абсолютной темноте и после долгой адаптации человек может увидеть "инфракрасный свет" — излучение, проходящее через специальное стекло, пропускающее длины волн больше 720 нанометров. Синие колбочки сетчатки человека "аппаратно" способны видеть ультрафиолетовое излучение — проблема в том, что роговица и хрусталик глаза его не пропускают.

"Бывает, что у человека по поводу катаракты вынимается хрусталики, в этом случае человек может видеть ультрафиолет. У нас был сотрудник, который видел разницу между двумя белилами — свинцовыми и цинковыми. Цинковые белила поглощают ультрафиолет, а свинцовые отражают", — сказал Максимов.

15 февраля 2012 в 01:30

Пациент с искусственным хрусталиком начал видеть ультрафиолет. Как?

  • Биотехнологии

Сегодня на slashdot появился пост некоего автора, который после имплантирования искусственного хрусталика начал видеть в ультрафиолетовом диапазоне, точнее примерно 365 нм - это при средней верхней границе для обычного человека в 400нм. Меня заинтересовала эта тема, и я решил выяснить, что там происходит, и не маячит ли тут призрак Криса Картера .


Итак, небольшой экскурс в офтальмохирургию. Во время второй мировой войны некий английский офтальмолог, оперировавший пилотов, сбитых в воздушном бою, выяснил, что плексиглас фонаря самолета, попавший в глаз, не отторгается тканями. Мало того, он травматически меняет форму роговицы - а поскольку она отвечает за ~70% рефракции в глазном яблоке (остальное приходится на хрусталик), то изменение ее формы приводит к значительным изменениям рефракции глаза. Естественно, тут же пришла идея лечить близорукость уменьшением оптической силы роговицы путем ее надрезания и уменьшения кривизны. По сегодняшним меркам это напоминает трепанацию черепа каменным ножом (и без точнейших замеров и расчетов по точности это примерно то же самое) - но это было лучше чем ничего.

Потом догадались, что если плексиглас не отторгается, то его можно ставить туда намеренно… предварительно обточив до формы линзы. Зачем? Потому что годам к 45-50 естественный хрусталик а) становится жестким и теряет возможность аккомодации (что приводит к невозможности перефокусировать зрение), и б) некоторое время спустя мутнеет, в результате чего зрение медленно падает почти до нуля. Так вот, его можно заменить.

Поначалу вместо естественного хрусталика ставились жесткие линзы, которые, вполне естественно, вызывали массу неприятных ощущений, повреждали внутренние ткани, итп. Сейчас в общих чертах процедура выглядит так. Я буду использовать англоязычную терминологию в транслите.

1. Пациент лежит под микроскопом. Веки фиксируются в открытом положении, в глазной нерв ставится анестезия.

2. Сбоку глаза, примерно на границе радужной оболочки, с использованием сверх-острого скальпеля делается небольшой надрез, порядка 2мм в длину.

3. Хрусталик находится внутри капсулярной сумки. Внутрь глаза через этот разрез проникает инструмент, которым эта сумка надрезается.

4. Внутрь сумки через эти два разреза проникает щуп факоэмульсификатора. Этот девайс а) ультразвуком размельчает затвердевший естественный хрусталик, и б) одновременно высасывает размельченные куски. Тут важно не порвать капсулярную сумку - это чревато массой проблем и осложнений, а также не задеть радужную оболочку. Она по консистенции напоминает промокашку, и ее повреждение ведет к проблемам со зрением - к примеру, пациент может начать видеть ореолы вокруг точечных источников света.

5. После факоэмульсификации через микрошприц в капсулярную сумку закачивается вискоэластичный гель - чтобы эта сумка не сдулась, т.к. хрусталика там больше нет.

6. Фанфары и барабаны - имплантируем линзу. Сама линза сделана из материалов вроде силикона, и ее можно сложить. Именно поэтому достаточно разреза всего в 2мм, хоть линза и заметно больше. Она поставляется в картридже, который вставляется в шприц, который аккуратно вставляется через разрез в глаз, далее в капсулярную сумку, и попросту выдавливается туда. Там она разворачивается и принимает свой первоначальный вид, в чем ей помогает хирург. Через пол-минуты она готова.

7. Если линза асферическая, то она может заодно помочь и с астигматизмом. В таком случае ее надо довернуть на нужный угол. Впоследствии ткани глаза срастутся через определенные выступы на внешней, оптически нефункциональной части линзы, и зафиксируют ее от поворота. Нередки случаи, когда линза все же проворачивается бесконтрольно - это исправляется повторной операцией.

8. Глаз увлажняется, закрывается повязкой. Надрез заживет сам. Пациент отправляется домой.

Такая операция может стоить от 3 до 20 тысяч долларов в зависимости от разных причин. Период восстановления до снятия повязки занимает сутки-двое. Да, в это иногда трудно поверить, но в нашей практике были случаи, когда 70-летние бабушки получали зрение в 80% на следующий день после операции… никогда сам не видел, но, как говорят, люди начинают плакать от счастья.

А теперь по теме. Почему тот пациент начал видеть УФ? Потому, что хрусталик обычно поглощает УФ лучи, не допуская их до сетчатки. Старые линзы изготавливались из материалов, которые зачастую спокойно пропускали УФ, и пациенты начинали видеть в УФ диапазоне. Вот только длилось это недолго, т.к. сетчатка повреждается ультрафиолетом. Поэтому в новых линзах присутствуют добавки, которые отфильтровывают УФ лучи. Тому пациенту была установлена линза Crystalens, которая по всей видимости содержит меньшее количество таких присадок (или вообще их не содержит), отсюда имеем результат. Шеф как-то оперировал одного пациента, которому по разным причинам на одном глазу была показана одна линза, а на другом - другая, и коэффициент поглощения УФ у них был разный. Пациент потом был весьма удивлен, что одним глазом он может видеть УФ, а другим нет. Его это не беспокоило, и все остались весьма довольны.

P.S. Материал был написан после консультации с моим шефом, офтальмохирургом с более чем 10-летним стажем. Если в тексте присутствуют ошибки - я полностью принимаю всю ответственность за кривой перевод, и прошу указать на оные.

P.P.S. Чем я таким занимаюсь, будучи программистом, чтобы писать такие тексты? Хороший вопрос. Наша компания консультирует других по поводу расчетов правильных линз для каждого конкретного глаза… а я занимаюсь реализацией расчетного софта. Невероятно интересная тема, и весьма вознаграждающая, особенно когда нам пишут про бабушек и дедушек, получивших орлиное зрение.

Здоровья вам, берегите глаза:)

Энергия Солнца представляет собой электромагнитные волны, которые подразделяются на несколько частей спектра:

  • рентгеновские лучи - с самой короткой длиной волны (ниже 2 нм);
  • длина волны ультрафиолетового излучения составляет от 2 до 400 нм;
  • видимая часть света, которая улавливается глазом человека и животных (400-750 нм);
  • теплое окислительное (свыше 750 нм).

Каждая часть находит свое применение и имеет большое значение в жизни планеты и всей ее биомассы. Мы же рассмотрим, что представляют собой лучи в диапазоне от 2 до 400 нм, где они используются и какую роль играют в жизни людей.

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный света только при очень высоких температурах от 1500 до 2000 0 С. Именно в таком интервале УФ достигает пика активности по воздействию.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах - от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны - 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны - 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа - для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя - Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты - исключительно его заслуга.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Следующие источники - это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников - лазеры. Их работа основана на генерации различных газов - как инертных, так и нет. Источниками могут быть:

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.

Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника - как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.

Спектрометрия - основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях - специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы - бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ - это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения - это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.

Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд - красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита - сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях - разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.

Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.

Ультрафиолет был открыт более 200 лет назад, но лишь с изобретением искусственных источников ультрафиолетового излучения человек смог использовать удивительные свойства этого невидимого света. Сегодня ультрафиолетовая лампа помогает бороться со многими заболеваниями и дезинфицирует, позволяет создавать новые материалы и используется криминалистами. Но для того чтобы приборы УФ спектра приносили пользу, а не вред, необходимо четко представлять, какими они бывают и для чего служат.

Что такое ультрафиолетовое излучение и каким оно бывает

Ты наверняка знаешь, что свет – это электромагнитное излучение. В зависимости от частоты цвет такого излучения изменяется. Низкочастотный спектр кажется нам красным, высокочастотный – синим. Если поднять частоту еще выше, то свет станет фиолетовым, а после совсем исчезнет. Точнее, исчезнет для твоего глаза. На самом деле излучение перейдет в область ультрафиолетового спектра, который мы не способны видеть из-за особенностей глаза.

Но если мы не видим ультрафиолетовый свет, то это не значит, что он на нас никак не воздействует. Ты же не будешь отрицать, что радиация безопасна, поскольку мы ее не можем увидеть. А радиация – не что иное, как такое же электромагнитное излучение, как свет и ультрафиолет, только более высокой частоты.

Но вернемся к ультрафиолетовому спектру. Он располагается, как мы выяснили, между видимым светом и радиационным излучением:

Зависимость типа электромагнитного излучения от его частоты

Отбросим свет с радиацией и рассмотрим ультрафиолетовое излучение поближе:


Разделение ультрафиолетового диапазона на поддиапазоны

На рисунке хорошо видно, что весь УФ диапазон условно делится на два поддиапазона: ближний и дальний. Но на этом же рисунке сверху мы видим деление на УФА, УФВ и УФС. В дальнейшем мы будем пользоваться именно таким разделением – ультрафиолет А, В и С, поскольку оно четко разграничивает степень воздействия излучения на биологические объекты.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Конечный участок дальнего диапазона никак не обозначен, поскольку не имеет особого практического значения. Воздух для ультрафиолетового излучения с длиной волны короче 100 нм (его еще называют жестким ультрафиолетовым) практически непрозрачен, поэтому его источники можно использовать только в вакууме.

Свойства ультрафиолета и воздействие его на живые организмы

Итак, в нашем распоряжении три ультрафиолетовых диапазона: А, В и С. Рассмотрим свойства каждого из них.

Ультрафиолет А

Излучение лежит в диапазоне 400 – 320 нм и называется мягким или длинноволновым ультрафиолетовым. Проникновение его в глубинные слои живых тканей минимально. При умеренном применении УФА не только не наносит вреда организму, но и полезен. Он укрепляет иммунитет, способствует выработке витамина D, улучшает состояние кожи. Именно под таким ультрафиолетом мы загораем на пляже.

Но при передозировке даже мягкий ультрафиолетовый диапазон может представлять определенную опасность для человека. Наглядный пример: добрался до пляжа, прилег на пару часиков и «сгорел». Знакомо? Безусловно. Но могло быть и еще хуже, если бы ты лежал часиков пять или с открытыми глазами и без качественных солнцезащитных очков. При длительном воздействии на глаза УФА способен вызвать ожог роговицы, а кожу сжечь буквально до волдырей.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все вышесказанное справедливо и для других биологических объектов: растений, животных, бактерий. Именно умеренный УФА в значительной степени провоцирует «цветение» воды в водоемах и порчу продуктов, подстегивая рост водорослей и бактерий. Передозировка его чрезвычайно вредна.

Ультрафиолет В

Средневолновый ультрафиолет, занимающий диапазон 320 – 280 нм. Ультрафиолетовое излучение с такой длиной волны способно проникать в верхние слои живых тканей и вызывать серьезные изменения их структуры вплоть до частичного разрушения ДНК. Даже минимальная доза УФВ способна вызвать серьезный и довольно глубокий радиационный ожог кожи, роговицы и хрусталика. Серьезную опасность такое излучение также представляет для растений, а для многих видов вирусов и бактерий ввиду их небольших размеров УФВ вообще смертелен.

Ультрафиолет С

Самый коротковолновый и самый опасный для всего живого диапазон, в который входит ультрафиолетовое излучение с длиной волны от 280 до 100 нм. УФС даже в небольших дозах способно разрушать цепи ДНК, вызывая мутации. У человека, как правило, его воздействие вызывает рак кожи и меланому. Из-за способности достаточно глубоко проникать в ткани УФС может вызвать необратимый радиационный ожог сетчатки и глубокие повреждения кожного покрова.

Дополнительную опасность представляет способность ультрафиолетового излучения категории С ионизировать молекулы кислорода, находящиеся в атмосфере. В результате такого воздействия в воздухе образуется озон — трехатомный кислород, который является сильнейшим окислителем, а по степени опасности для биологических объектов относится к первой, самой опасной категории ядов.

Устройство ультрафиолетовой лампы

Человек научился создавать искусственные источники ультрафиолетового излучения, причем излучать они могут в любом заданном диапазоне. Конструктивно ультрафиолетовые лампы выполняются в виде колбы, заполненной инертным газом с примесью металлической ртути. По бокам колбы впаиваются тугоплавкие электроды, на которые подается напряжение питания прибора. Под действием этого напряжения в колбе начинается тлеющий разряд, который заставляет молекулы ртути испускать ультрафиолет во всех спектрах УФ диапазона.


Конструкция ультрафиолетовой лампы

Изготавливая колбу из того или иного материала, конструкторы могут отсекать излучение определенной длины волны. Так, лампа из эритемного стекла пропускает только ультрафиолетовое излучение типа А, увиолевая колба уже прозрачна для УФВ, но не пропускает жесткое излучение УФС. Если же колбу сделать из кварцевого стекла, то прибор будет излучать все три вида ультрафиолетового спектра – А, В, С.

Все лампы ультрафиолетового света являются газоразрядными и должны включаться в сеть через специальное пускорегулирующее устройство (ЭПРА). В противном случае тлеющий разряд в колбе мгновенно перейдет в неуправляемый дуговой.


Электромагнитное (слева) и электронное пускорегулирующие устройства для газоразрядных ламп ультрафиолетового света

Важно! Лампы накаливания с синим баллоном, которые мы часто используем для прогревания при ЛОР заболеваниях, не являются ультрафиолетовыми. Это обычные лампочки накаливания, а синяя колба служит лишь для того, чтобы ты не получил тепловой ожог и не повредил глаза ярким светом, держа довольно мощную лампу у самого лица.


Рефлектор Минина не имеет никакого отношения к ультрафиолетовому излучению и комплектуется обычной лампой накаливания из синего стекла

Применение УФ ламп

Итак, ультрафиолетовые лампы существуют, и мы даже знаем, что у них внутри. Но для чего они нужны? Сегодня приборы ультрафиолетового света широко используются как в быту, так и на производстве. Вот основные области применения УФ ламп:

1. Изменение физических свойств материалов . Под действием ультрафиолетового излучения некоторые синтетические материалы (краски, лаки, пластики и пр.) могут менять свои свойства: твердеть, размягчаться, менять цвет и другие физические характеристики. Живой пример – стоматология. Специальная фотополимерная пломба пластична до тех пор, пока врач после ее установки не осветит полость рта мягким ультрафиолетовым светом. После такой обработки полимер становится прочнее камня. В косметических салонах тоже используют специальный гель, твердеющий под УФ лампой. С его помощью, к примеру, косметологи наращивают ногти.

После обработки ультрафиолетовой лампой мягкая, как пластилин, пломба приобретает исключительную прочность

2. Криминалистика и уголовное право . Полимеры, способные светиться в ультрафиолете, широко используются для защиты от подделки. Для интереса попробуй осветить купюру ультрафиолетовой лампой. Таким же образом можно проверить купюры почти всех стран, подлинность особо важных документов или печатей на них (так называемая защита «Цербер»). Криминалисты пользуются ультрафиолетовыми лампами для обнаружения следов крови. Она, конечно, не светится, зато полностью поглощает ультрафиолетовое излучение и на общем фоне будет казаться абсолютно черной.


Элементы защиты купюр, печатей и паспорта (Беларусь), видимые только в ультрафиолетовом излучении

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если ты смотрел фильмы про криминалистов, то наверняка заметил, что в них кровь под УФ лампой вопреки вышесказанному мной светится сине-белым. Чтобы достичь такого эффекта, специалисты обрабатывают предполагаемые пятна крови специальным составом, который взаимодействует с гемоглобином, после чего начинает флюоресцировать (светиться в ультрафиолетовом излучении). Такой метод не только более нагляден для зрителя, но и более эффективен.

3. При дефиците естественного ультрафиолета . Польза ультрафиолетовой лампы спектра А для биологических объектов была открыта почти одновременно с ее изобретением. При недостатке естественного ультрафиолетового излучения страдает иммунитет человека, кожа приобретает нездоровый бледный оттенок. Если растения и комнатные цветы выращивать за оконным стеклом или под обычными лампами накаливания, то и они чувствуют себя не лучшим образом – плохо растут и часто болеют. Все дело в отсутствии ультрафиолетового излучения спектра А, недостаток которого особенно вреден для детей. Сегодня УФА лампы используют для укрепления иммунитета и улучшения состояния кожи повсеместно, где не хватает естественного света.


Использование ультрафиолетовых ламп спектра А для восполнения дефицита естественного ультрафиолета

На самом деле приборы, служащие для восполнения дефицита естественного ультрафиолетового света, излучают не только ультрафиолет А, но и В, хотя доля последнего в общем излучении чрезвычайно мала — от 0,1 до 2-3 %.

4. Для дезинфекции . Все вирусы и бактерии – тоже живые организмы, к тому же они настолько малы, что «перегрузить» их ультрафиолетовым светом совсем несложно. Жесткий ультрафиолет (С) в состоянии проходить некоторые микроорганизмы буквально насквозь, разрушая их структуру. Таким образом, лампы спектра В и С, получившие название антибактериальных или бактерицидных, можно использовать для обеззараживания квартиры, общественных заведений, воздуха, воды, предметов и даже для лечения вирусных инфекций. При использовании ламп УФС дополнительным дезинфицирующим фактором выступает озон, о котором я писал выше.


Использование ультрафиолетовых ламп для дезинфекции и антибактериальной обработки

Ты наверняка слышал такой медицинский термин, как кварцевание. Эта процедура – не что иное, как обработка предметов или тела человека строго дозированным жестким ультрафиолетовым излучением.

Основные характеристики источников ультрафиолетового излучения

Какими характеристиками УФ лампы нужно руководствоваться, чтобы при ее использовании получить максимальный эффект и не нанести вреда здоровью своему и окружающих? Вот основные из них:

  1. Диапазон излучения.
  2. Мощность.
  3. Назначение.
  4. Срок службы.

Излучаемый диапазон

Это основной параметр. В зависимости от длины волны ультрафиолет действует по-разному. Если УФА опасен лишь для глаз, и при правильном использовании не представляет серьезной угрозы для организма, то УФВ в состоянии не только испортить глаза, но и спровоцировать глубокие, порой необратимые ожоги на коже. УФС отлично дезинфицирует, но может представлять смертельную опасность для человека, поскольку излучение такой длины волны разрушает ДНК и образует ядовитый газ озон.

С другой стороны, спектр УФА абсолютно бесполезен в качестве антибактериального средства. Пользы от такой лампы, к примеру, при очистке воздуха от микробов, практически не будет. Более того, некоторые виды бактерий и микрофлоры станут еще активнее. Таким образом, выбирая УФ лампу, необходимо четко представлять для чего она будет использоваться и какой спектр излучения она должна иметь.

Мощность

Имеется в виду сила создаваемого лампой УФ потока. Она пропорциональна потребляемой мощности, поэтому при выборе прибора ориентируются обычно на данный показатель. Бытовые ультрафиолетовые лампы обычно не превышают мощности 40-60, профессиональные устройства могут иметь мощность до 200-500 Вт и более. Первые обычно имеют низкое давление в колбе, вторые – высокое. Выбирая излучатель для тех или иных целей, нужно четко представлять, что в плане мощности больше — не всегда значит лучше. Для получения максимального эффекта излучение прибора должно быть строго дозированным. Поэтому при покупке лампы обращайте внимание не только на ее назначение, но и на рекомендуемую площадь помещения или производительность прибора, если он служит для очистки воздуха или воды.

Назначение и конструкция

По своему назначению ультрафиолетовые лампы делятся на бытовые и профессиональные. Вторые обычно имеют большую мощность, более широкий и жесткий спектр излучения и сложны по конструкции. Именно поэтому они требуют для своего обслуживания квалифицированного специалиста и соответствующих знаний. Если ты собираешься покупать ультрафиолетовую лампу для домашнего использования, то от профессиональных устройств лучше отказаться. В таком случае велика вероятность, что лампа, скорее, навредит, чем принесет пользу. Особенно это касается приборов, работающих в диапазоне УФС, излучение которых является ионизирующим.

По типу конструкции ультрафиолетовые лампы делятся на:

1. Открытые . Эти приборы излучают ультрафиолет непосредственно в окружающую среду. При неправильном применении представляют наибольшую опасность для организма человека, но позволяют провести качественное обеззараживание помещения, включая воздух и все находящиеся в нем предметы. Лампы открытой или полуоткрытой (узконаправленного излучения) конструкции используются также для медицинских целей: лечения инфекционных заболеваний и восполнения дефицита ультрафиолета (фитолампы, солярии).


Использование бактерицидных ламп для антибактериальной обработки помещений

2. Рециркуляторы или приборы закрытого типа. Лампа в них находится за полностью непрозрачным кожухом, а УФ изучение воздействует только на рабочую среду – газ или жидкость, прогоняемую специальным насосом сквозь облучаемую камеру. В быту рециркуляторы обычно используются для бактерицидной обработки воды или воздуха. Поскольку устройства не излучают ультрафиолет, при правильном использовании они полностью безопасны для человека и могут использоваться в его присутствии. Рециркуляторы могут быть как бытового, так и промышленного назначения.


Рециркулятор – стерилизатор для воды (слева) и для воздуха

3. Универсальные. Приборы этого типа могут работать как в режиме рециркуляции воздуха, так и прямого излучения. Конструктивно выполнены как рециркулятор с раскладным кожухом. В собранном виде это обычный рециркулятор, с открытыми шторками – бактерицидная лампа открытого типа.


Универсальная бактерицидная лампа в режиме рециркулятора (слева)

Срок службы

Поскольку принцип работы и конструкция ультрафиолетовой лампы сходны с принципом и устройством люминесцентного осветительного прибора, логично предположить, что сроки службы у них одинаковы и могут достигать 8 000–10 000 ч. На практике это не совсем так. В процессе работы лампа «стареет»: ее световой поток уменьшается. Но если в обычной осветительной лампе этот эффект заметен визуально, то УФ лампу «на глаз» проверить невозможно. Поэтому производитель ограничивается гораздо меньшим сроком работы: от 1 000 до 9 000 часов в зависимости от мощности лампы, ее назначения и, конечно, качества материалов, комплектующих и бренда.

Если в паспорте на устройство не указана периодичность замены ламп или заявлен максимальный срок 20 тысяч часов и более, то от покупки такого устройства стоит отказаться. Также должна насторожить и слишком низкая стоимость прибора. Скорее всего, это низкокачественный товар либо вовсе подделка.

Что такое свет?

Солнечный свет проникает в верхние слои атмосферы мощностью около одного киловатта на квадратный метр. Все жизненные процессы на нашей планете приводятся в движение благодаря этой энергии. Свет - это электромагнитное излучение, его природа основана на электромагнитных полях, которые называются фотонами. Фотоны света характеризуются различными уровнями энергии и длиной волн, выражаемой в нанометрах (нм). Самые известные длины волн - видимые. Каждая длина волны представлена определенным цветом. Например, Солнце желтого цвета, потому что наиболее мощные излучения в видимом диапазоне спектра именно желтые.

Однако существуют и другие волны за пределами видимого света. Все они называются электромагнитным спектром. Самая мощная часть спектра - это гамма-лучи, далее следуют рентгеновские лучи, ультрафиолетовый свет, и только потом видимый свет, занимающий малую долю электромагнитного спектра и располагающийся между ультрафиолетовым и инфракрасным светом. Всем известен инфракрасный свет, как тепловое излучение. Спектр включает в себя микроволны и заканчивается радиоволнами, более слабыми фотонами. Для животных наибольшее полезное значение несут ультрафиолетовый, видимый и инфракрасный свет.

Видимый свет.

Помимо обеспечения привычного для нас освещения, свет несет еще и немаловажную функцию регуляция продолжительности светового дня. Видимый спектр света находится в диапазоне от 390 до 700 нм. Именно он фиксируется глазом, а цвет зависит от длины волны. Индекс цветопередачи (CRI) показывает способность какого-либо источника света освещать объект, по сравнению с естественным солнечным светом принятым за 100 CRI. Искусственные источники света со значением CRI более 95 считаются светом полного спектра, способные освещать объекты так же, как и естественное освещение. Также важная характеристика для определения цвета излучаемого света - это цветовая температура, измеряемая в Кельвинах (К).

Чем выше показатель цветовой температуры, тем насыщеннее голубой оттенок (7000К и выше). При низких значениях цветовой температуры свет имеет желтоватый оттенок, как например у бытовых ламп накаливания (2400К).

Среднее значение температуры дневного света составляет около 5600К, оно может варьировать от минимального показателя 2000К на закате до 18000К при пасмурной погоде. Для максимального приближения условий содержания животных к естественным, необходимо размещать в вольерах лампы с максимальным индексом цветопередачи CRI и цветовой температурой около 6000К. Тропические растения необходимо обеспечивать световыми волнами в диапазоне, используемом для фотосинтеза. Во время этого процесса растения используют энергию света для производства сахаров, “натурального топлива” для всех живых организмов. Освещение в диапазоне 400-450 нм способствует росту и размножению растений.

Ультрафиолетовое излучение

Ультрафиолетовый свет или УФ-излучение занимает большую долю в электромагнитном излучении и находится на границе с видимым светом.

Ультрафиолетовое излучение разделяют на 3 группы в зависимости от длины волн:

  • . UVA- длинноволновой ультрафиолет А, диапазон от 290 до 320 нм, имеет важное значение для рептилий.
  • . UVB - средневолновой ультрафиолет B, диапазон от 290 до 320 нм, имеет наиболее существенное значение для рептилий.
  • . UVC - коротковолновой ультрафиолет C, диапазон от 180 до 290 нм, является опасным для всех живых организмов (ультрафиолетовая стерилизация).

Было доказано, что ультрафиолет А (UVA) влияет на аппетит, окрас, поведение и репродуктивную функцию животных. Рептилии и амфибии видят в диапазоне UVA (320- 400 нм), поэтому именно он влияет на то, как они воспринимают окружающий мир. Под воздействием этого излучения цвет еды или другого животного будут выглядеть иначе, чем воспринимает глаз человека. Подача сигналов при помощи частей тела (например, Anolis sp.) или изменение цвета покровов (например, Chameleon sp) распространено повсеместно среди рептилий и земноводных, и если UVA-излучение отсутствует, то эти сигналы могут восприниматься животными не корректно. Наличие ультрафиолета А играет важную роль при содержании и разведении животных.

Ультрафиолет B находится в диапазоне волн 290-320 нм. В естественных условиях рептилии синтезируют витамин D3 под воздействием солнечных лучей UVB-спектра. В свою очередь, витамин D3 необходим для усвоения животными кальция. На кожных покровах UVB вступает в реакцию с предшественником витамина D, 7-дегидрохолестеролом. Под влиянием температуры и специальных механизмов кожи, провитамин D3 превращается в витамин D3. Печень и почки преобразуют витамин D3 в его активную форму, гормон (1,25-дигидрокиси витамин D), которые регулирует кальциевый обмен.

Хищные и всеядные пресмыкающиеся получают большое количество необходимого витамина D3 из пищи. Растительная пища не содержит D3 (холекальцеферол), а содержит D2 (эргокальцеферол), который менее эффективен в метаболизме кальция. Именно по этой причине растительноядные пресмыкающиеся сильнее зависят от качества освещения, чем плотоядные.

Нехватка витамина D3 достаточно быстро приводит к нарушению обмена веществ в костных тканях животных. При подобных нарушениях метаболизма патологические изменения могут отразиться не только на костных тканях, но и на других системах органов. Внешними проявлениями нарушений могут быть отеки, вялость, отказ от пищи, неправильно развитие костей и панциря у черепах. При обнаружении подобных симптомов, необходимо обеспечить животное не только источником UVB-излучения, но и добавить в рацион корма или добавки с кальцием. Но не только молодые животные подвержены подобным нарушениям при неправильном содержании, взрослые особи и яйцекладущие самки также подвергаются серьезному риску при отсутствии UVB-излучения.

Инфракрасный свет

Природная эктотермия рептилий и земноводных (холоднокровность) подчеркивает важность инфракрасного излучения (тепла) для терморегуляции. Диапазон инфракрасного спектра находится в сегменте не видимым человеческим глазом, но отчетливо ощущаемом теплом на коже. Солнце излучает большую часть своей энергии в инфракрасной части спектра. Для рептилий, активных преимущественно в светлое время суток, лучшим источников терморегуляции являются специальные греющие лампы, излучающие большое количество инфракрасного света (+700 нм).

Интенсивность освещения

Климат Земли определяется количеством солнечной энергии, попадающей на ее поверхность. На интенсивность освещения влияют множество факторов, такие как озоновый слой, географическое положение, облака, влажность воздуха, высота расположения относительно уровня моря. Количество света, падающего на поверхность, называется освещенностью и измеряется в люменах на квадратный метр или люксах (lux). Освещенность под прямыми солнечными лучами составляет около 100 000 lux. Обычно дневная освещенность, проходя через облака, колеблется от 5 000 до 10 000 lux, ночью от Луны она составляет всего лишь 0,23 lux. Густая растительность в тропических лесах также влияет на эти значения.

Ультрафиолетовое излучение измеряется в микроваттах на квадратный сантиметр (µW/sm2). Его количество сильно отличается на разных полюсах, увеличиваясь при приближении к экватору. Количество UVB-излучения в полдень на экваторе составляет примерно 270 µW/sm2.Это значение уменьшается с заходом Солнца, и также увеличивается с рассветом. Животные в естественной среде обитания принимают солнечные ванны преимущественно с утра и на закате, остальную часть времени они проводят в своих убежищах, норах или в корне деревьев. В тропических лесах лишь малая часть прямых солнечных лучей может проникнуть сквозь густую растительность в нижние слои, достигнув поверхности земли.

Уровень ультрафиолетового излучения и света, в среде обитания рептилий и амфибий, может изменяться в зависимости от целого ряда факторов:

Среда обитания:

В зонах тропических лесов тени значительно больше, чем в пустыне. В густых лесах значение УФ-излучения имеет широкий диапазон, на верхние ярусы леса попадает значительно больше прямых солнечных лучей, чем на лесную почву. В пустынных и степных зонах практически нет естественных укрытий от прямых солнечных лучей, также эффект излучения может быть усилен за счет отражения от поверхности. В горной местности есть долины, куда солнечный свет может проникать лишь на несколько часов в сутки.

Проявляя большую активность в течение светового дня, дневные животные получают больше УФ-облучения, чем ночные виды. Но даже они не проводят весь день под прямыми солнечными лучами Солнца. Многие виды прячутся в укрытиях в самое жаркое время дня. Прием солнечных ванн ограничивается ранним утром и вечером. В различных климатических поясах дневные циклы активности у рептилий могут отличаться. Некоторые виды ночных животных выходят погреться на солнце днем с целью терморегуляции.

Широта:

Наибольшей интенсивность ультрафиолетовое излучение обладает на экваторе, где Солнце располагается на наименьшем расстоянии от поверхности Земли, и его лучи проходят минимальное расстояние сквозь атмосферу. Толщина озонового слоя в тропиках по естественным причинам тоньше, чем в средних широтах, поэтому озоном поглощается меньше УФ-излучения. Полярные широты более удалены от Солнца, и немногочисленные ультрафиолетовые лучи вынуждены проходить через богатые озоном слои с большими потерями.

Высота над уровнем моря:

Интенсивность УФ-излучения увеличивается с высотой, поскольку уменьшается толщина атмосферы, поглощающей солнечные лучи.

Погодные условия:

Облака играют серьезную роль фильтра для лучей ультрафиолета, направляющихся к поверхности Земли. В зависимости от толщины и формы они способны поглощать до 35 - 85 % энергии солнечных излучений. Но, даже покрывая полностью небо, облака не перекроют доступ лучей к поверхности Земли.

Отражение:

Некоторые поверхности, такие как песок (12%), трава (10%) или вода (5%) способны отражать ультрафиолетовое излучение, которое на них попадает. В таких местах интенсивность УФ-излучения может быть значительно выше ожидаемых результатов даже в тени.

Озон:

Озоновый слой поглощает часть ультрафиолетового излучения Солнца, которое направлялось к поверхности Земли. Толщина озонового слоя изменяется в течение года, а сам он постоянно перемещается.