Оптическая сила линзы равна формула. Линзы

Преломление света широко используется в различных оптических приборах: фотоаппаратах, биноклях, телескопах, микроскопах. Непременной и самой существенной деталью таких приборов является линза. А оптическая сила линзы - одна из основных величин, характеризующая любой

Оптическая линза или оптическое стекло - это проницаемое для света стеклянное тело, которое ограничено с обеих сторон сферическими или иными кривыми поверхностями (одна из двух поверхностей может быть плоской).

По форме ограничивающих поверхностей они могут быть сферическими, цилиндрическими и другими. Линзы, которые имеют середину толще, чем края, называются выпуклыми; с краями толще середины - вогнутыми.
Если пустить параллельный пучок лучей света на а за ней поместить экран, то, перемещая его относительно линзы, мы получим на нем небольшое светлое пятно. Это она, преломляя падающие на нее лучи, собирает их. Поэтому ее называют собирающей. Вогнутая же линза, преломляющая свет, рассеивает его в стороны. Ее называют рассеивающей.

Центр линзы называют ее оптическим центром. Любая прямая, которая проходит через него, получила называние оптической оси. А ось, пересекающая центральные точки сферических преломляющихся поверхностей, получила название главной (основной) оптической оси линзы, другие - побочных осей.

Если направить на осевой луч, параллельный ее оси, то, пройдя ее, пересечет ось на определенном расстоянии от нее. Это расстояние называют фокусным, а сама точка пересечения - ее фокусом. Все линзы имеют по два фокуса, которые находятся с двух сторон. Основываясь на можно теоретически доказать, что все осевые лучи, или лучи, идущие поблизости от основной оптической оси, падающие на тонкую собирательную линзу параллельно ее оси, сходятся в фокусе. Опыт подтверждает это теоретическое доказательство.

Пустив пучок осевых лучей параллельно основной оптической оси на тонкую двоякоугольную линзу, мы обнаружим, что из нее эти лучи выйдут пучком, который расходится. В случае попадания такого расходящегося пучка в наш глаз, нам покажется, что лучи выходят из одной точки. Эта точка получила называние мнимого фокуса. Плоскость, которая проведена перпендикулярно по отношению к основной оптической оси через фокус линзы, получила название фокальной плоскости. Фокальных плоскостей у линзы две, и находятся они по обе стороны от нее. Когда на линзу направлен пучок лучей, которые параллельны любой из побочных оптических осей, этот пучок, после того как произойдет его преломление, сходится на соответствующей оси в месте ее пересечения с фокальной плоскостью.

Оптическая сила линзы - это такая величина, которая обратна ее фокусному расстоянию. Определяем ее с помощью формулы:
1/F=D.

Единица измерения этой силы получила название диоптрия.
1 диоптрия - это оптическая сила линзы, имеющей в 1 м.
У выпуклых линз эта сила положительна, а у вогнутых - отрицательна.
Например: Чему будет равняться оптическая сила очковой выпуклой линзы, если F = 50 см - ее фокусное расстояние?
D = 1/F; по условию: F = 0,5 м; отсюда: D = 1/0,5 = 2 диоптриям.
Величина фокусного расстояния, а, следовательно, и оптическая сила линзы определяются вещества, из которого состоит линза, и радиусом ограничивающих ее сферических поверхностей.

Теория дает формулу, по которой можно ее рассчитать:
D = 1/F = (n - 1)(1/R1 + 1/R2).
В данной формуле n - преломление вещества линзы, R1, 2 - радиусы кривизны поверхности. Радиусы выпуклых поверхностей считают положительными, а вогнутых - отрицательными.

Характер получаемого от линзы изображения предмета, т. е. его величина и положение, зависит от расположения предмета по отношению к линзе. Местонахождение предмета и его величина могут быть найдены с помощью формулы линзы:
1/F = 1/d + 1/f.
Для определения линейного увеличения линзы пользуемся формулой:
k = f/d.

Оптическая сила линзы - понятие, которое требует подробнейшего изучения.

Фо́кусное расстоя́ние - физическая характеристика оптической системы. Для центрированной оптической системы, состоящей из сферических поверхностей, описывает способность собирать лучи в одну точку при условии, что эти лучи идут из бесконечности параллельным пучком параллельно оптической оси.

Для системы линз, как и для простой линзы конечной толщины, фокусное расстояние зависит от радиусов кривизны поверхностей, показателей преломления стёкол и толщин.

Определяется как расстояние от передней главной точки до переднего фокуса (для переднего фокусного расстояния), и как расстояние от задней главной точки дозаднего фокуса (для заднего фокусного расстояния). При этом, под главными точками подразумеваются точки пересечения передней (задней) главной плоскости соптической осью.

Величина заднего фокусного расстояния является основным параметром, которым принято характеризовать любую оптическую систему.

Парабола (или параболоид вращения) фокусирует параллельный пучок лучей в одну точку

Фо́кус (от лат. focus - «очаг») оптической (или работающей с другими видами излучения) системы - точка, в которой пересекаются («фокусируются» ) первоначально параллельные лучи после прохождения через собирающую систему (либо где пересекаются их продолжения, если система рассеивающая). Множество фокусов системы определяет её фокальную поверхность. Главный фокус системы является пересечением её главной оптической оси и фокальной поверхности. В настоящее время , вместо термина главный фокус (передний или задний) используются термины задний фокус и передний фокус .

Опти́ческая си́ла - величина, характеризующая преломляющую способность осесимметричных линз и центрированных оптических систем из таких линз. Измеряется оптическая сила в диоптриях (в СИ): 1 дптр=1 м -1 .

Обратно пропорциональна фокусному расстоянию системы:

где - фокусное расстояние линзы.

Оптическая сила положительна у собирающих систем и отрицательна в случае рассеивающих.

Оптическая сила системы, состоящей из двух находящихся в воздухе линз с оптическими силами и, определяется формулой :

где - расстояние между задней главной плоскостью первой линзы и передней главной плоскостью второй линзы. В случае тонких линзсовпадает с расстоянием между линзами.

Обычно оптическая сила используется для характеристики линз, используемых в офтальмологии, в обозначениях очков и для упрощённого геометрического определения траектории луча.

Для измерения оптической силы линз используют диоптриметры , которые позволяют проводить измерения в том числе астигматических и контактных линз.

18. Формула сопряжённых фокусных расстояний. Построение изображения линзой.

Сопряжённое фо́кусное расстоя́ние - расстояние от задней главной плоскости объектива до изображения объекта, когда объект расположен не в бесконечности, а на некотором расстоянии от объектива. Сопряженное фокусное расстояние всегда большефокусного расстояния объектива и тем больше, чем меньше расстояние от объекта допередней главной плоскости объектива . Эта зависимость приведена в таблице, в которой расстоянияивыражены в величинах.

Изменение величины сопряженного фокусного расстояния

Расстояние до объекта R

Расстояние до изображения d

Для линзы эти расстояния связаны отношением, непосредственно следующим из формулы линзы:

или, если d и R выразить в величинах фокусного расстояния :

б) Построение изображения в линзах .

Для построения хода луча в линзе применяются те же законы, что и для вогнутого зеркала. Луч, параллельный оси , проходит через фокус и наоборот. Центральный луч (луч, идущий через оптический центр линзы) проходит через линзу без отклонения ; в толстых

линзах он немного смещается параллельно самому себе (как в плоскопараллельной пластинке, см. рис. 214). Из обратимости хода лучей следует, что каждая линза имеет два фокуса, которые находятся на одинаковых расстояниях от линзы (последнее верно лишь для тонких линз). Для тонких собирающих линз и центральных лучей справедливы следующие законы построения изображений :

g > 2F ; изображение обратное, уменьшенное, действительное, b > F (рис.221).

g = 2F ; изображение обратное, равное, действительное, b = F .

F < g < 2F ; изображение обратное, увеличенное, действительное, b > 2F .

g < F ; изображение прямое, увеличенное, мнимое, - b > F .

При g < F лучи расходятся, на продолжении пересекаются и дают мнимое

изображение. Линза действует как увеличительное стекло (лупа).

Изображения в рассеивающих линзах всегда мнимые, прямые и уменьшенные (рис.223).

Оптическая сила линзы. Какая линза сильнее?

Автор : На рис. 8.3 изображены две собирающие линзы. На каждую из них падает параллельный пучок лучей, который после преломления собирается в главном фокусе линзы. Как Вы считаете (исходя из здравого смысла), какая из двух линз сильнее ?

Читатель: По здравому смыслу сильнее линза на рис. 8.3, а , ведь она сильнее преломляет лучи, и поэтому после преломления они собираются ближе к линзе, чем в случае, показанном на рис. 8.3, б.

Оптическая сила линзы – это физическая величина, обратная фокусному расстоянию линзы:

Если фокусное расстояние измеряется в метрах: [F ] = м, то [D ] = 1/м. Для единицы измерения оптической силы 1/м существует специаль­ное название – диоптрия (дптр).

Итак, оптическая сила линзы измеряется в диоптриях:

= 1 дптр.

Одна диоптрия – это оптическая сила такой линзы, у которой фокусное расстояние равно одному метру: F = 1 м.

Согласно формуле (8.1) оптическая сила собирающей линзы может быть вычислена по формуле

. (8.2а)

Читатель : Мы рассмотрели случай двояковыпуклой линзы, но ведь линзы бывают и двояковогнутые, и вогнуто-выпуклые, и плоско-выпуклые и т.д. Как же вычислять фокусное расстояние линзы в общем случае?

Автор : Можно показать (чисто геометрически), что в любом случае формулы (8.1) и (8.2) будут справедливы, если брать значения радиусов сферических поверхностей R 1 и R 2 с соответствующими знаками: «плюс» – если соответствующая сферическая поверхность выпуклая, и «минус» – если вогнутая.

Например, при расчете по формуле (8.2) оптических сил линз, изображенных на рис. 8.4, следует брать следующие знаки величин R 1 и R 2 в этих случаях: a) R 1 > 0 и R 2 > 0, так как обе поверхности выпуклые; б) R 1 < 0 и R 2 < 0, так как обе поверхности вогнутые; в случае в)R 1 < 0 и R 2 > 0, так как первая поверхность вогнутая, а вторая выпуклая.

Рис. 8.4

Читатель : А если одна из поверхностей линзы (например, первая) не сферическая, а плоская?

Рис. 8.5

Читатель : Величина F (и, соответственно, D ) по формулам (8.1) и (8.2) может получиться отрицательной. Что это значит?

Автор : Это значит, что данная линза рассеивающая . То есть пучок лучей, параллельных главной оптической оси, преломляется так, что сами преломленные лучи образуют расходящийся пучок , но продолжения этих лучей пересекаются перед плоскостью линзы на расстоянии, равном |F | (рис. 8.5).

СТОП! Решите самостоятельно: А2–А4.

Задача 8.1. Преломляющие поверхности линзы являются концентрическими сферическими поверхностями. Большой радиус кривизны R = 20 см, толщина линзы l = 2 см, показатель преломления стекла п = 1,6. Собирающей или рассеивающей будет линза? Найдите фокусное расстояние.

Рис. 8.6

Инструкция

Сначала нужно измерить фокусное расстояние . В этом случае сначала закрепите в вертикальном положении перед экраном, а затем направьте на нее световые лучи прямо через центр линзы . Важно точно световым лучом в центр, иначе результаты будут недостоверными.

Теперь установите экран на таком расстоянии от линзы , чтобы лучи, выходящие из нее, в одной точке. При помощи линейки остается только измерить полученное расстояние – приложите линейку к центру линзы и определите расстояние в сантиметрах до экрана.

Если же вы не можете определить фокусное расстояние, стоит воспользоваться еще одним проверенным способом – уравнением тонкой линзы . Чтобы найти все составляющие уравнения, придется поэкспериментировать с линзой и экраном.

Линзу установите между экраном и лампой на подставке. Лампу и линзу двигайте так, чтобы в конечном итоге на экране получилось изображение. Теперь измерьте линейкой :- от предмета до линзы ;- от линзы до изображения.Переведите результаты в метры.

Теперь можно рассчитывать оптическую силу . Сначала нужно число 1 разделить на первое расстояние, а затем и на второе полученное значение. Полученные результаты суммируйте – это и будет оптическая сила линзы .

Видео по теме

Обратите внимание

Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = 1/м

Источники:

  • как найти оптическую силу линзы

Оптической силой обладает линза. Она измеряется в диоптриях. Эта величина показывает увеличение линзы, то есть то, насколько сильно лучи преломляются в ней. От этого, в свою очередь, зависит изменение размеров предметов на изображениях. Обычно оптическая сила линзы указывается ее изготовителем. Но если подобной информации нет, то измерьте ее самостоятельно.

Вам понадобится

  • - линзы;
  • - источник света;
  • - экран;
  • - линейка.

Инструкция

Если известно фокусное расстояние линзы, то ее оптическую , поделив число 1 на это фокусное расстояние в метрах. Фокусное расстояние расстоянию от оптического центра до места, в которой все преломленные лучи в одну точку. Причем для собирающей линзы это значение действительное, а для рассеивающей - мнимое (точка строится на продолжениях рассеянных ).

В том случае, если фокусное расстояние неизвестно, то для собирающей линзы его можно измерить. Укрепите линзу на штативе, расположите перед ней экран, и направьте на нее с обратной стороны пучок параллельных ее главной оптической оси световых лучей. Двигайте линзу до тех пор, пока на экране световые лучи не сойдется в одну точку. Измерьте расстояние от оптического центра линзы до экрана – это и будет фокус собирающей линзы. Ее оптическую силу измерьте по методике, изложенной в предыдущем .

Когда измерить фокусное расстояние невозможно, используйте тонкой линзы. Для этого экраном и предметом (лучше всего подойдет световая стрелка типа свечи или лампочки на подставке) установите линзу. Передвигайте предмет и линзу таким образом, чтобы на экране получить изображение. В случае с рассеивающей линзой оно быть мнимым. Измерьте расстояние от оптического центра линзы до предмета и его изображения в метрах.

Рассчитайте оптическую силу линзы:
1. Число 1 поделите от предмета до оптического центра.
2. Число 1 поделите на расстояние от изображения до оптического центра. Если изображение мнимое, перед ним поставьте знак «минус».
3. Найдите сумму , получившихся в пп.1 и 2 с учетом знаков перед ними. Это и будет оптическая сила линзы.

Оптическая сила линзы может иметь как положительное, так и отрицательное значение.

Источники:

  • оптическую силу линзы

Некоторые люди, имеющие такое заболевание, как близорукость, вынуждены носить линзы ежедневно. Уход за ними – очень важен, так как именно от этого зависит безопасность и дальнейшее здоровье ваших глаз. Как правило, линзы в процессе носки собирают микроскопическую пыль, которую необходимо удалять с помощью специального многоцелевого раствора.

Вам понадобится

  • - контейнер для линз;
  • - многоцелевой раствор;
  • - пинцет для линз;
  • - 3% перекись водорода;
  • - раствор тиосульфата натрия.

Инструкция

Намочите указательный и пальцы раствором, слегка протрите линзу, удаляя загрязнения, например, волоски. После этого капните в линзу несколько капель раствора и указательным пальцем, не нажимая и не прилагая усилий, еще раз протрите ее со всех сторон.

Далее продезинфицируйте линзы . Для этого возьмите их специальным пинцетом (он должен быть с мягкими наконечниками, дабы не повредить поверхность) и положите в контейнер, наполненный свежим и чистым раствором. Оставьте их в нем минимум на четыре часа (в идеале – на восемь ). После этого линзы готовы к ношению.

Часто на образуются некие белковые отложения, причиной этому могут быть различные внешние факторы, например, пыль, табачный дым и прочие. Чтобы возвратить линзам прозрачность используйте ферментные таблетки. Учтите, что использовать их можно только раз в неделю.

Возьмите контейнер, наполните свежим раствором, в каждой ячейке растворите по одной ферментной таблетки. Затем промойте линзы от загрязнений и положите в контейнер на пять часов.

Далее выньте их, снова тщательно промойте. Тоже самое сделайте и с контейнером. После этого наполните его свежим раствором, положите в него линзы и оставьте на восемь часов. После этого они готовы к носке.

Если вы используете цветные линзы с так называемой «подложкой», уход за ними особенный. Такие линзы еженедельно опускайте в 3 % раствор перекиси водорода на пятнадцать минут, затем в 2,5 % раствор тиосульфата на десять минут. А этого продержите линзы в обычном многоцелевом растворе в течение 8 часов.

Видео по теме

Совет 4: Контактные линзы или классические очки - плюсы и минусы

Когда контактные линзы только появились в продаже, их недостатки были слишком существенными, поэтому большинство людей с проблемами зрения предпочитали носить очки. Линзы были дорогими, неудобными, требовали много времени для ухода. Современные же линзы лишены этих минусов, поэтому люди стали задумываться о том, чтобы заменить ими привычные очки.

Плюсы и минусы контактных линз

Достоинства контактных линз по сравнению с очками очевидны: во-первых, они совершенно незаметны , поэтому с эстетической точки зрения они лучше. А некоторые модели, например корейские , могут не только поменять цвет глаз, но и придать радужке необычный рисунок. Во-вторых, благодаря тому, что линзы плотно прилегают к , в них можно без проблем вести активный образ жизни – заниматься спортом, ходить в бассейн, бегать, кататься на велосипеде. При этом не приходится бояться того, что линзы упадут , сломаются, запотеют, будут отражать свет или мешать обзору. Более широкий , который обеспечивают линзы, тоже часто упоминают среди их плюсов: в очках хорошо видно только то, что находится непосредственно за стеклами, а так как стекла имеют ограниченную форму, то угол обзора гораздо меньше.

Врачи утверждают, что ограничение бокового обзора вредит зрению.

Долгое время одним из существенных недостатков линз была дороговизна, но сегодня качественные « » линзы из мягких материалов стоят , чем красивая и крепкая оправа и с покрытием от запотевания. Тем не менее очки могут прослужить несколько лет, а линзы приходится покупать постоянно: в месяц на них уходит от 300 до 2000 рублей в зависимости от выбранного типа и марки.

За линзами нужно тщательнее следить, так как они имеют непосредственный контакт с глазом, поэтом очень легко занести инфекцию. Их необходимо хранить в специальном растворе и ежедневно чистить, перед надеванием и снятием нужно тщательно мыть руки.

С другой стороны, за очками тоже приходится следить – время от времени протирать стекла, хранить в футляре, чинить при необходимости. А на уход за линзами тратится всего около двух минут в день.

Во время ношения линз нужно следить за состоянием своих глаз, так как даже самые проницаемые для воздуха линзы не дают глазу полноценно «дышать». Поэтому нужно регулярно пользоваться каплями для глаз, избегать пыльных и задымленных помещений, не использовать лаки для волос, дезодоранты или духи (или зажмуривать глаза). Если частичка пыли попадет на линзу, это принесет дискомфорт, придется снимать и промывать ее.

Плюсы и минусы очков

Одно из основных преимуществ очков состоит в том, что они не соприкасаются с глазом, поэтому нет риска занести инфекцию или повредить глаз. Также очки просто и быстро снимать при необходимости. Из этого вытекает простота их ношения и легкость в уходе за очками.

Очки могут стать частью имиджа человека и даже улучшить его внешний облик, они визуально увеличивают глаза, придают человеку серьезный и респектабельный вид, внушают уверенность.

Недостатков у очков тоже много: они запотевают, когда происходит перепад температуры, ломаются и

Что такое поляризованный свет?

Когда поток света отражается от какой-либо гладкой блестящей поверхности, от воды, снега, льда, витрины магазина, стекла автомобиля, он может преобразоваться в поляризованный поток. Волны поляризованного света, возникшие в этих случаях, совершают колебания только в одном направлении, а не во всех.

Когда неполяризованный свет отразится от обширной горизонтальной поверхности, от воды, например, он будет поляризованным и начнет совершать колебания лишь в горизонтальном направлении. Этот свет называют линейно или поляризованным, именно он доставляет тот неприятный мешающий блеск, от которого глаза ощущают дискомфорт.

Поляризованные линзы

Поляризованные линзы, как и все солнцезащитные линзы, снижают чувствительность к слишком яркому свету, блокируют слепящий эффект, который вызван отражением света от зеркальных и прозрачных поверхностей. Так, поляризованные линзы позволяют безопасно и комфортно находиться на улице в солнечную погоду.

Главный таких линз заключается в том, чтобы пропускать лишь полезный свет. Естественный свет распространяется перпендикулярно вектору направления. Свет попадает на капот автомобиля, воду, мокрую дорогу и отражается от них, но поляризованная линза его блокирует и пропускает только полезный естественный свет. Благодаря улучшенному восприятию, также усиливается острота ощущения окружающего мира.

К преимуществам поляризованных линз относятся:

Улучшение контрастов;
- нейтрализация слепящего яркого света;
- придание насыщенности цветам;
- снижение яркости ореола вокруг светового источника;
- защита от ультрафиолета на 100%;
- улучшение качества восприятия мира;
- увеличение визуального комфорта;
- максимальная защита от солнца;
- гарантия оптимальной безопасности ношения.

В каких случаях необходимы поляризационные линзы?

Очки с поляризованными линзами незаменимы на рыбалке и для занятий водными видами спорта. Они устраняют блики солнца, отражаемые от воды. Для организации досуга на свежем воздухе такие линзы также будут полезны, так как они улучшают контрастность и качество цветов. За автомобиля водитель будет защищен от бликов солнца, отражаемых от капота, мокрой дороги или лобового стекла.

Поляризационные линзы помогают и при ослепляющем, и при дестабилизирующем блеске, создающем проблематичные, а иногда опасные для жизни ситуации. Поляризованные линзы, благодаря этим преимуществам, становятся все популярнее для защиты глаз при провождении времени на свежем воздухе в чрезмерной яркости излучения солнца – в горах, на пляже, при занятиях зимними видами спорта.

Сейчас речь пойдет о геометрической оптике. В этом разделе много времени уделяется такому объекту, как линза. Ведь она может быть разной. При этом формула тонкой линзы одна на все случаи. Только нужно знать, как ее правильно применить.

Виды линз

Ею всегда является прозрачное для тело, которое имеет особенную форму. Внешний вид объекта диктуют две сферические поверхности. Одну из них допускается заменить на плоскую.

Причем у линзы может оказаться толще середина или края. В первом случае она будет называться выпуклой, во втором — вогнутой. Причем в зависимости от того, как сочетаются вогнутые, выпуклые и плоские поверхности, линзы тоже могут быть разными. А именно: двояковыпуклыми и двояковогнутыми, плосковыпуклыми и плосковогнутыми, выпукло-вогнутыми и вогнуто-выпуклыми.

В обычных условиях эти объекты используются в воздухе. Изготавливают их из вещества, которого больше, чем у воздуха. Поэтому выпуклая линза будет собирающей, а вогнутая — рассеивающей.

Общие характеристики

До того, как говорить о формуле тонкой линзы , нужно определиться с основными понятиями. Их обязательно нужно знать. Поскольку к ним постоянно будут обращаться различные задачи.

Главная оптическая ось — это прямая. Она проведена через центры обеих сферических поверхностей и определяет место, где находится центр линзы. Существуют еще дополнительные оптические оси. Они проводятся через точку, являющуюся центром линзы, но не содержат центры сферических поверхностей.

В формуле тонкой линзы есть величина, определяющая ее фокусное расстояние. Так, фокусом является точка на главной оптической оси. В ней пересекаются лучи, идущие параллельно указанной оси.

Причем фокусов у каждой тонкой линзы всегда два. Они расположены по обе стороны от ее поверхностей. Оба фокуса у собирающей действительные. У рассеивающей — мнимые.

Расстояние от линзы до точки фокуса — это фокусное расстояние (буква F ) . Причем его значение может быть положительным (в случае собирающей) или отрицательным (для рассеивающей).

С фокусным расстоянием связана еще одна характеристика — оптическая сила. Ее принято обозначать D. Ее значение всегда - величина, обратная фокусу, то есть D = 1/ F. Измеряется оптическая сила в диоптриях (сокращенно, дптр).

Какие еще обозначения есть в формуле тонкой линзы

Помимо уже указанного фокусного расстояния, потребуется знать несколько расстояний и размеров. Для всех видов линз они одинаковые и представлены в таблице.

Все указанные расстояния и высоты принято измерять в метрах.

В физике с формулой тонкой линзы связано еще понятие увеличения. Оно определяется как отношение размеров изображения к высоте предмета, то есть H/h . Его можно обозначить буквой Г.

Что нужно для построения изображения в тонкой линзе

Это необходимо знать, чтобы получить формулу тонкой линзы, собирающей или рассеивающей. Чертеж начинается с того, что обе линзы имеют свое схематическое изображение. Обе они выглядят как отрезок. Только у собирающей на его концах стрелки направлены наружу, а у рассеивающей - внутрь этого отрезка.

Теперь к этому отрезку необходимо провести перпендикуляр к его середине. Так будет изображена главная оптическая ось. На ней с обеих сторон от линзы на одинаковом расстоянии полагается отметить фокусы.

Предмет, изображение которого требуется построить, рисуется в виде стрелки. Она показывает, где находится верх предмета. В общем случае предмет помещается параллельно линзе.

Как построить изображение в тонкой линзе

Для того чтобы построить изображение предмета, достаточно найти точки концов изображения, а потом их соединить. Каждая из этих двух точек может получиться от пересечения двух лучей. Наиболее простыми в построении являются два из них.

    Идущий из указанной точки параллельно главной оптической оси. После соприкосновения с линзой он идет через главный фокус. Если речь идет о собирающей линзе, то этот фокус находится за линзой и луч идет через него. Когда рассматривается рассеивающая, то луч нужно провести так, чтобы его продолжение проходило через фокус перед линзой.

    Идущий непосредственно через оптический центр линзы. Он не изменяет за ней своего направления.

Бывают ситуации, когда предмет поставлен перпендикулярно главной оптической оси и заканчивается на ней. Тогда достаточно построить изображение точки, которая соответствует краю стрелки, не лежащей на оси. А потом провести из нее перпендикуляр к оси. Это и будет изображение предмета.

Пересечение построенных точек дает изображение. В тонкой собирающей линзе получается действительное изображение. То есть оно получается непосредственно на пересечении лучей. Исключением является ситуация, когда предмет помещен между линзой и фокусом (как в лупе), тогда изображение оказывается мнимым. У рассеивающей же оно всегда получается мнимым. Ведь оно получается на пересечении не самих лучей, а их продолжений.

Действительное изображение принято чертить сплошной линией. А вот мнимое - пунктиром. Связано это с тем, что первое на самом деле там присутствует, а второе только видится.

Вывод формулы тонкой линзы

Это удобно сделать на основе чертежа, иллюстрирующего построение действительного изображения в собирающей линзе. Обозначение отрезков указано на чертеже.

Раздел оптики не зря называется геометрической. Потребуются знания именно из этого раздела математики. Для начала необходимо рассмотреть треугольники АОВ и А 1 ОВ 1 . Они подобны, поскольку в них имеется по два равных угла (прямые и вертикальные). Из их подобия следует, что модули отрезков А 1 В 1 и АВ относятся как модули отрезков ОВ 1 и ОВ.

Подобными (на основании того же принципа по двум углам) оказываются еще два треугольника: COF и A 1 FB 1 . В них равны отношения уже таких модулей отрезков: А 1 В 1 с СО и FB 1 с OF. Исходя из построения равными будут отрезки АВ и СО. Поэтому левые части указанных равенств отношений одинаковые. Поэтому равны и правые. То есть ОВ 1 / ОВ равно FB 1 / OF.

В указанном равенстве отрезки, обозначенные точками, можно заменить на соответствующие физические понятия. Так ОВ 1 — это расстояние от линзы до изображения. ОВ является расстоянием от предмета до линзы. OF — фокусное расстояние. А отрезок FB 1 равен разности расстояния до изображения и фокуса. Поэтому его можно переписать по-другому:

f / d = ( f - F ) / F или Ff = df - dF.

Для вывода формулы тонкой линзы последнее равенство необходимо разделить на dfF. Тогда получается:

1/ d + 1/f = 1/F.

Это у есть формула тонкой собирающей линзы. У рассеивающей фокусное расстояние отрицательное. Это приводит к изменению равенства. Правда, оно незначительное. Просто в формуле тонкой рассеивающей линзы стоит минус перед отношением 1/ F. То есть:

1/ d + 1/f = - 1/F.

Задача о нахождении увеличения линзы

Условие. Фокусное расстояние собирающей линзы равно 0,26 м. Требуется вычислить ее увеличение, если предмет находится на расстоянии 30 см.

Решение. Его начать стоит с введения обозначений и перевода единиц в Си. Так, известны d = 30 см = 0,3 м и F = 0,26 м. Теперь нужно выбрать формулы, основная из них та, которая указана для увеличения, вторая — для тонкой собирающей линзы.

Их нужно как-то объединить. Для этого придется рассмотреть чертеж построения изображения в собирающей линзе. Из подобных треугольников видно, что Г = H/h = f/d. То есть для того, чтобы найти увеличение, придется вычислить отношение расстояния до изображения к расстоянию до предмета.

Второе известно. А вот расстояние до изображения полагается вывести из формулы, указанной ранее. Получается, что

f = dF / ( d - F ).

Теперь эти две формулы необходимо объединить.

Г = dF / ( d ( d - F )) = F / ( d - F ).

В этот момент решение задачи на формулу тонкой линзы сводится к элементарным расчетам. Осталось подставить известные величины:

Г = 0,26 / (0,3 - 0,26) = 0,26 / 0,04 = 6,5.

Ответ: линза дает увеличение в 6,5 раз.

Задача, в которой нужно найти фокус

Условие. Лампа расположена в одном метре от собирающей линзы. Изображение ее спирали получается на экране, отстоящем от линзы на 25 см. Вычислите фокусное расстояние указанной линзы.

Решение. В данные полагается записать такие величины: d =1 м и f = 25 см = 0,25 м. Этих сведений достаточно, чтобы из формулы тонкой линзы вычислить фокусное расстояние.

Так 1/ F = 1/1 + 1/0,25 = 1 + 4 = 5. Но в задаче требуется узнать фокус, а не оптическую силу. Поэтому остается только разделить 1 на 5, и получится фокусное расстояние:

F = 1/5 = 0, 2 м.

Ответ: фокусное расстояние собирающей линзы равно 0,2 м.

Задача о нахождении расстояния до изображения

Условие . Свечку поставили на расстоянии 15 см от собирающей линзы. Ее оптическая сила равна 10 дптр. Экран за линзой поставлен так, что на нем получается четкое изображение свечи. Чему равно это расстояние?

Решение. В краткую запись полагается записать такие данные: d = 15 см = 0,15 м, D = 10 дптр. Формулу, выведенную выше, нужно записать с небольшим изменением. А именно, в правой части равенства поставить D вместо 1/ F.

После нескольких преобразований получается такая формула для расстояния от линзы до изображения:

f = d / ( dD - 1).

Теперь необходимо подставить все числа и сосчитать. Получается такое значение для f: 0,3 м.

Ответ: расстояние от линзы до экрана равно 0,3 м.

Задача о расстоянии между предметом и его изображением

Условие. Предмет и его изображение отстоят друг от друга на 11 см. Собирающая линза дает увеличение в 3 раза. Найти ее фокусное расстояние.

Решение. Расстояние между предметом и его изображением удобно обозначить буквой L = 72 см = 0,72 м. Увеличение Г = 3.

Здесь возможны две ситуации. Первая — предмет стоит за фокусом, то есть изображение получается действительное. Во второй — предмет между фокусом и линзой. Тогда изображение с той же стороны, что и предмет, причем мнимое.

Рассмотрим первую ситуацию. Предмет и изображение находятся по разные стороны от собирающей линзы. Здесь можно записать такую формулу: L = d + f. Вторым уравнением полагается записать: Г = f / d. Необходимо решить систему этих уравнений с двумя неизвестными. Для этого заменить L на 0,72 м, а Г на 3.

Из второго уравнения получается, что f = 3 d. Тогда первое преобразуется так: 0,72 = 4 d. Из него легко сосчитать d = 0, 18 (м). Теперь легко определить f = 0,54 (м).

Осталось воспользоваться формулой тонкой линзы, чтобы вычислить фокусное расстояние. F = (0,18 * 0,54) / (0,18 + 0,54) = 0,135 (м). Это ответ для первого случая.

Во второй ситуации — изображение мнимое, и формула для L будет другой: L = f - d. Второе уравнение для системы будет тем же. Аналогично рассуждая, получим, что d = 0, 36 (м), а f = 1,08 (м). Подобный расчет фокусного расстояния даст такой результат: 0,54 (м).

Ответ: фокусное расстояние линзы равно 0,135 м или 0,54 м.

Вместо заключения

Ход лучей в тонкой линзе — это важное практическое приложение геометрической оптики. Ведь их используют во многих приборах от простой лупы до точных микроскопов и телескопов. Поэтому знать о них необходимо.

Выведенная формула тонкой линзы позволяет решать множество задач. Причем она позволяет делать выводы о том, какое изображение дают разные виды линз. При этом достаточно знать ее фокусное расстояние и расстояние до предмета.