Стратегические решения в условиях неопределенности. Стратегия в условиях неопределенности Стратегии для разных уровней неопределенности

Принятие решений в условиях неопределённости

1. Максиминный критерий Вальда.

2. Критерий Сэвиджа (минимаксного риска).

3. Критерий Гурвица (пессимизма-оптимизма).

1. Максиминный критерий Вальда (критерий крайнего пессимизма)

(«рассчитывай на худшее»)

В группу критериев выбора оптимальной стратегии статистика, применяемых при неизвестных априорных вероятностях состояний природы , входят критерии Вальда, Сэвиджа и Гурвица . Они используют анализ платежной матрицы либо матрицы рисков.

Если распределение вероятностей будущих состояний природы неизвестно , то вся информация о природе сводится к перечню ее возможных состояний .

Максиминный критерий Вальда – это критерий крайнего пессимизма, или критерий осторожного наблюдателя. Его можно сформулировать как для чистых, так и для смешанных стратегий.

Критерий Вальда является критерием крайнего пессимизма , так как статистик предполагает, что природа реализует такие состояния, при которых величина его выигрыша принимает наименьшее значение.

Критерий тождественен максиминному (пессимистическому) критерию, используемому при решении матричных игр в чистых стратегиях.

Из каждой строки выбираются минимальные элементы, т.е. которые соответствуют наихудшему результату ЛПР при известных состояниях «природы» . Затем выбирается стратегия ЛПР, соответствующая максимальному элементу из отобранных минимальных :

. (1)

Выбранные таким образом варианты полностью исключают риск, поскольку ЛПР не может столкнуться с худшим результатом, чем тот, на который он ориентируется.

Применение данного критерия оправданно, если ситуация, в которой принимается решение, характеризуется следующими признаками:

    вероятности состояний «природы» неизвестны;

    решение реализуется только один раз или малое количество раз;

    полная недопустимость риска.

Таким образом, оптимальной по критерию Вальда считается чистая стратегия , которая в наихудших условиях гарантирует максимальный выигрыш. Значит, оптимальной будет максиминная чистая стратегия , а максимальным выигрышем – нижняя чистая цена игры в парной игре с нулевой суммой.

Пример 1.

Игра "Поставщик".

Выпуск продукции фирмы существенно зависит от скоропортящегося материала, например, молока или ягод, поставляемого партиями стоимостью 100ед.

Если поставка не прибывает в срок, фирма теряет 400 ед. от недовыпуска продукции.

Фирма может послать к поставщику свой транспорт (расходы 50 ед.), однако опыт показывает, что в половине случаев транспорт возвращается ни с чем.

Можно увеличить вероятность получения материала до 80%, если предварительно послать своего представителя, но расходы увеличатся еще на 50 ед.

Существует возможность приобретать более дорогой (на 50%) материал-заменитель у другого, вполне надежного поставщика, однако, кроме расходов на транспорт (50 ед.) возможны дополнительные издержки хранения материала в размере 30 ед., если его количество на складе превысит допустимую норму, равную одной партии.

Какой стратегии должен придерживаться завод в сложившейся ситуации?

Решение

У природы два состояния: поставщик надежный и поставщик ненадежный. У фирмы - четыре стратегии: 1) не осуществлять никаких дополнительных действий, 2) послать к поставщику свой транспорт, 3) послать к поставщику представителя и транспорт, 4) купить и привезти материал-заменитель от другого поставщика.

Составим таблицу расчетов:

Затраты и убытки фирмы-изготовителя

Ситуация

Стоимость материала

Недовыпуск продукции

Транспорт

Командировочные расходы

Издержки хранения

Общая сумма

Решение

На основе полученных результатов вычислений можно составить платежную матрицу:

Ответ . Нужно придерживаться третьей стратегии и затраты не превысят 260 ед., если послать к поставщику представителя и транспорт.

1 . Рассмотренный способ поиска оптимального решения есть критерий Вальда (максиминный критерий принятия решения). Выбирается решение, гарантирующее получение выигрыша не меньше, чем maxmin:

ед.

Применяя этот критерий мы представляем на месте природы активного и злонамеренного противника. Это пессимистичный подход .

2. Максимаксный критерий . Самый благоприятный случай:

ед.

Если фирма ничего не предпримет, то потратит не больше 100 единиц. Это критерий абсолютного оптимизма .

Критерий Вальда для смешанных стратегий

Оптимальной считается та смешанная стратегия статистика , при которой минимальный средний выигрыш будет максимальным: . (2)

Критерий Вальда ориентируют статистика на самые неблагоприятные состояния природы, то есть выражают пессимистическую оценку ситуации.

2. Критерий Сэвиджа (минимаксного риска )

На практике, выбирая одно из возможных решений, часто останавливаются на том, осуществление которого приведет к наименее тяжелым последствиям , если выбор окажется ошибочным. Этот подход к выбору решения математически был сформулирован американским статистиком Сэвиджем в 1954 году и получил название принципа Сэвиджа . Он особенно удобен для экономических задач и часто применяется для выбора решений в играх человека с природой.

По принципу Сэвиджа каждое решение характеризуется величиной дополнительных потерь, которые возникают при реализации этого решения , по сравнению с реализацией решения, правильного при данном состоянии природы. Естественно, что правильное решение не влечет за собой никаких дополнительных потерь, и их величина равна нулю.

При выборе решения, наилучшим образом соответствующего различным состояниям природы, следует принимать во внимание только эти дополнительные потери, которые по существу, будут являться следствием ошибок выбора.

Для решения задачи строится так называемая «матрица рисков », элементы которой показывают, какой убыток понесет игрок (ЛПР) в результате выбора неоптимального варианта решения.

Напомним, что Риском игрока при выборе стратегии в условиях (состояниях) природы называется разность между максимальным выигрышем, который можно получить в этих условиях, и выигрышем, который получит игрок в тех же условиях, применяя стратегию .

Критерий Сэвиджа – это критерий минимаксного риска, минимизации «сожалений». Этот критерий, как критерий Вальда, является максимально осторожным и пессимистическим.

В критерии Сэвиджа пессимизм проявляется по-другому: худшим считается не минимальный выигрыш, а максимальная потеря выигрыша по сравнению с тем, что можно было бы достичь в данных условиях (максимальный риск).

Критерий Сэвиджа ориентируется не на результат, а на риск (потери или штрафы) .

В качестве оптимальной выбирается стратегия, при которой величина потерь в наихудших условиях минимальна. Критерий Сэвиджа рекомендует выбирать в качестве оптимальной ту стратегию, которая минимизирует максимальный риск:

. (3)

Требования , предъявляемые к ситуации, в которой принимается решение по критерию Сэвиджа, совпадают с требованием к использованию критерия Вальда. Критерий Сэвиджа, как и критерий Вальда, ориентирует статистика на самые неблагоприятные состояния природы.

Пример 2. Для задачи «Поставщик» минимакс риска достигается сразу при двух стратегиях А 2 и А 3:

Найти оптимальное решение игры , применяя критерий Сэвиджа.

Решение.

Ориентируемся на самые неблагоприятные состояния «природы». Вычислим риски статистика .

Для первого столбца:

Для второго столбца:

Для третьего столбца:

Запишем матрицу рисков .

Стратегии статистика

Определим в каждой строке наибольшее число – наибольший риск статистика , если он применяет стратегию , а природа меняет свои состояния , , . Дополним матрицу рисков последним столбцом «наибольшие риски».

Матрица рисков и наибольшие риски

Стратегии статистика

Наибольшие риски

Найдем наименьший риск: .

Значит, оптимальной стратегией по критерию Сэвиджа является стратегия .

4.3. Критерий Гурвица (пессимизма-оптимизма)

Критерий Гурвица – критерий обобщенного максимума, или пессимизма-оптимизма.

Представляется логичным, что при выборе решения вместо двух крайностей в оценке ситуации придерживаться некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилучшего, благоприятного поведения природы.

Такой компромиссный вариант и был предложен Гурвицем. Согласно этому подходу для каждого решения необходимо определить линейную комбинацию min и max выигрыша и взять ту стратегию, для которой эта величина окажется наибольшей.

Этот критерий обеспечивает промежуточное решение между крайним оптимизмом и крайним пессимизмом , которое определяется по принципу:

. (4)

Число () - степень оптимизма , удовлетворяет условию и выбирается из субъективных соображений, особенностей среды, здравого смысла, исходя из опыта ЛПР, его отношения к риску и т.п. На выбор значения степени оптимизма оказывает влияние мера ответственности: чем серьезнее последствия ошибочных решений, тем больше желание принимающего решение застраховаться, то есть степень оптимизма  ближе к нулю.

Для каждой строки рассчитывается среднее взвешенное (с учетом выбранного значения ) наименьшего и наибольшего результатов, после чего выбирается строка с максимальным значением .

При имеем критерий крайнего оптимизма , т.е. отражает позицию азартного игрока, ожидающего наиболее благоприятное состояние среды.

При критерий Гурвица превращается в критерий крайнего пессимизма Вальда.

Если 0 промежуточное отношение ЛПР к возможным рискам. При желании подстраховаться в данной ситуации принимают близким к единице.

Выбор значения субъективен, а, следовательно, субъективен и выбор решения, что совершенно неизбежно в условиях неопределенности.

Чем опаснее ситуация, тем больше ЛПР стремится застраховать себя от возможных рисков , тем ближе к 0. А чем менее он азартен, тем ближе к 1.

Оптимальная по Гурвицу стратегия должна гарантировать статистику больший выигрыш по сравнению с выигрышем, принимаемым статистиком интуитивно или исходя из опыта.

Применение критерия Гурвица оправданно, если ситуация, в которой принимается решение, характеризуется признаками :

    вероятности состояний природы неизвестны;

    решение реализуется малое количество решений;

    допускается некоторый риск.

Пример 3. Найти оптимальное решение статистической игры, заданной платежной матрицей, применяя критерий Гурвица.

Решение.

Для применения критерия Гурвица нужно знать значение вероятности . Пусть, например, . Это означает, что событие «наименьший возможный выигрыш статистика » желаем сделать более правдоподобным ( близко к единице), то есть страхуемся от неблагоприятных ситуаций в игре. Тогда

.

Запишем все промежуточные результаты в таблицу.

Из последнего столбца таблицы видно, что максимальное значение равно (–7,2) и соответствует чистой стратегии ; она и будет оптимальной по критерию Гурвица.

Анализ практических ситуаций проводится по нескольким критериям одновременно , что позволяет глубже исследовать суть явления и выбрать наиболее обоснованное управленческое решение . В качестве оптимальной на основании совокупных исследований берется та стратегия, которая чаще других называлась оптимальной по всем критериям.

Выбор критерия (как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной, чтобы нельзя было получить хотя бы частичной информации относительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы, применяют метод Байеса-Лапласа, либо проводят эксперимент, позволяющий уточнить поведение природы.

Контрольные вопросы

    Что понимается под играми с природой?

    Какими критериями пользуется статистик для определения своей оптимальной стратегии в условиях неопределенности?

    Что понимается под риском игрока?

    Поясните принципы использования моделей теории игр в экономических задачах в условиях неопределенности (игры с природой).

  1. ус­ловиях неопределённости , использующий аппарат нечёткой...
  2. Принятие решений в условиях неопределенности (5)

    Реферат >> Государство и право

    Ситуацией риска, а для другого – неопределённости . Риск принятия наихудшего решения в условиях , когда известны все исходные... потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости .. Процедуры и методы системного...

  3. Принятие управленческих решений в условиях риска и неопределенности

    Реферат >> Менеджмент

    ... Принятие управленческих решений в условиях риска и неопределенности. План: Введение. Источники и виды неопределенности. Принятие решений в условиях неопределённости ... и виды неопределенности. Принятие

Критерий максимакса (крайнего, «розового» оптимизма) основан на оптимистическом принципе Л. Гурвица, согласно которому выбирается вариант, обеспечивающий наибольший эффект в самой благоприятной ситуации.

Если матрицу последствий (3.1) рассматривать как матрицу эффекта Е,

Данный критерий соответствует стратегии 1 (см. рис.3.6), его целесообразно применять в тех случаях, когда имеется возможность повлиять на противоположную сторону, чтобы сделать более благоприятной неконтролируемую внешнюю среду, и реализовать возможности оптимального использования управляемых внутренних факторов.

Пример 3.3. Принимая матрицу последствий в примере 3.2 за матрицу эффектов выбрать вариант решения по критерию максимакса.

1. Исходные данные вводятся в Excel (рис.3.9). Затем, используя функцию МАКС для ячеек (B4:F4;…; B7:F7), последовательно находятся максимальные значения по каждому решению : a 1 =8, a 2 =12, a 3 =10, a 4 =8 .

Рис. 3.9. Результаты выбора оптимального решения по критерию максимакса

2. Из последовательности найденных максимальных значений a i (G4:G7) с помощью функции МАКС (ячейка G8) выбирается наибольшее значение: a 2 =12 , с учетом этого рекомендуется принять второе решение.

Если элементами матрицы A (3.1) являются затраты З, то их можно рассматривать как потери и тогда решение обеспечивающее наименьшие затраты выбирается из условий минимизации затрат:

. (3.10)

Критерий минимина (пессимизма)основан на пессимистическом принципе, согласно которому в условиях неблагоприятной внешней среды управляемые факторы могут быть использованы небла­гоприятным образом. Тогда, если матрица последствий является матрицей эффекта Е, то эффективное решение выбирается из условий обеспечения максимума:

. (3.11)

В реальных условиях не всегда возможен контроль за неконтролируемыми факторами внешней среды, особенно когда необходимо учитывать фактор времени. Например, при долгосрочном прогнозировании и планировании; проектировании сложных объектов и др. Или например, издержки производства являются контролируемыми факторами на коротких интервалах времени и неконтролируемые в долгосрочной перспективе, поскольку заранее неизвестны стоимость электроэнергии, стоимость материалов и покупных изделий и т.п. Еще одним примером является определение объемов производства продукции предприятия (управляемый фактор), которые зависят от разных факторов связанных с процессом производства. Эти факторы относятся к внутренней среде предприятия: уровень конструкторской и технологической подготовки производства, тип используемого обо­рудования, квалификация работающих и пр.

Этому критерию соответствует стратегия 2 (см. рис.3.6).

Пример 3.4. Принимая матрицу последствий в примере 3.2 за матрицу эффектов выбрать вариант решения по критерию минимина.

1. Исходные данные вводятся в Excel (рис.3.10). Затем, используя функцию МИН для ячеек (B4:F4;…; B7:F7), последовательно находятся минимальные значения по каждому i -му решению : .


Рис. 3.10. Результаты выбора оптимального решения по критерию минимина

3. Из последовательности найденных минимальных значений a i (G4:G7) с помощью функции МИН (ячейка G8) выбирается наименьшее значение: a 4 =1 , с учетом этого рекомендуется принять четвертое решение.

При анализе матрицы затрат критерий пессимизма принимает следующий вид

(3.12)

Критерий максимина (крайнего пессимизма) основан на пессимистическом принципе А. Вальда, согласно которому выбирается тот вариант, результат которого оказывается самым благоприятным среди наименее благоприятных.

Если ожидаемая ситуация будет складываться неблагоприятно, т.е. принесет самый малый доход: a i = min a i j , то выбирается такое решение, для которого минимальный (гарантированный) доход окажется наибольшим

. (3.13)

Данный критерий является консервативным, поскольку предлагает выбор с осторожной линией поведения, поэтому его целесообразно использовать в тех случаях, когда необходимо обеспечить успех при любых возможных условиях. В матрице решений (рис. 3.6) критерий Вальда соответствует стратегии 3.

Пример 3.5. Для матрицы последствий в примере 3.2 выбрать вариант решения по критерию максимина.

1. По каждому i –му альтернативному решению, используя функцию МИН находятся минимальные значения : a 1 =2, a 2 =2, a 3 =3, a 4 =1 (см. рис. 3.11, ячейки G4:G7)

Рис. 3.11. Результаты выбора оптимального решения по критерию максимина

2. С помощью функции МАКС из последовательности найденных минимальных значений a i (G4:G7) выбирается максимальное a 3 = 3 (ячейка G8).

3. Согласно правилу Вальда (3.11) предпочтение следует отдать третьему варианту решения (i=3 ), с максимально гарантированным результатом (выигрышем) независимо от варианта ситуации (внешних условий).

Критерий минимакса (минимаксного риска, ожидания убытков) основан на принципе разочарования Л. Сэвиджа. Согласно этому принципу, выбирается вариант, при реализации которого максимально возможное разочарование (разность между максимально возможным результатом и результатами, которые можно получить по каждому из оставшихся вариантов) оказывается наименьшим.

Здесь ориентируются на худшую ситуацию, которая сопряжена с наибольшим риском. При выборе решения используется матрица рисков R (3.5). Лучшим считается вариант решения, при котором максимальное значение риска будет наименьшим:

. (3.14)

При принятии инвестиционных решений в условиях неопределенности с ориентацией на наихудшие исходы применяются пессимистический критерий (максимина) и критерий разочарования (минимакса).

Данный критерий используется в тех случаях, когда требуется в любых условиях избежать большого риска, он соответствует стратегии 4 (рис. 3.6).

Пример 3.6. По матрице последствий в примере 3.2 выбрать вариант решения по критерию минимакса.

1. Предварительно по матрице последствий примера 2, используя выражение (3.4), рассчитываются элементы матрицы риска рис. 3.12.

2. В каждой строке матрицы рисков с помощью функции МАКС выбирается ее максимальный элемент (ячейки G4:G7): r i = : r 1 = 8, r 2 = 6, r 3 = 5, r 4 = 7.

Рис. 3.12. Результаты выбора оптимального решения по критерию минимакса

3. Согласно правилу Сэвиджа из этих величин выбирается наименьшая (функция МИН в ячейке G8): r 3 = 5, т.е. следует принять 3-е решение (i=3 ). Выбор этого варианта означает, что максимальные потери при различных вариантах ситуации окажутся минимальными и не превысят 5 единиц.

Критерий Гурвица обобщенного максимина (пессимизма-оптимизма) предполагает выбор смешанной стратегии , когдав определенной пропорции сочетаются пессимизм (осторожность) и оптимизм (склонность к значительному риску), т.е. выбирается промежуточное решение между линией поведения в расчете на худшее и линией поведения в расчете на лучшее.

По данному критерию выбирается вариант решения, при котором достигается максимальный показатель G , определяемый из выражения:

G i = max [a min a i j + (1 - a) max a i j ]. (3.15)

где а ij – выигрыш при i -м решении при j -м ва­рианте обстановки,

a – коэффициент, отражающий степень оптимизма (0 ≤ a ≤ 1 ): при a = 0 выбирается линия поведения в расчете на лучшее, т.е. делается ориентация на предельный риск (получаем максимаксный критерий); при a = 1 делается ориентация на худшее, тогда получаем критерий Вальда - ориентир на осторожное поведение. Промежуточные значения a между 0 и 1 и выбираются в зависимости от конкретной обстановки и склонности к риску лица, принимающего решение.

Пример.3.7. Предприятие готовится выпускать новые виды продукции, при этом возможны четыре варианта решений Q 1 , Q 2 , Q 3 , Q 4 , каждому из которых соответствует определенный вид продукции или их сочетание. Структуру спроса на продукцию характеризуют три варианта обстановки S 1 , S 2 , S 3 . Эффективности выпуска новых видов продукции а i j длякаждой парысочетаний решений Q i (i=1,2,…,m ) и обстановке S j (j=1,2,…,n ) приведены в таблице на рис.3.12. Необходимо по критерию Гурвица найти наиболее выгодное решение Q i и оценить влияние коэффициента оптимизма на выбор решения.

1. Зададимся последовательностью коэффициентов k с шагом 0,25: 0; 0,25; 0,50; 0,75; 1,00 и введем исходные данные на рабочий лист Excel, рис. 3.12.

2. Результаты расчета показателя G по выражению (3.13) для различ­ных вариантов решений в зависимости от величины коэффици­ента k приведены в нижней таблице рис.3.13.

Рис. 3.13. Исходные данные, расчетные формулы и результаты расчета критерия Гурвица (стрелки показывают эффективные решения)

Как видно из рисунка (ячейки В18:F18), изменение коэффициента k влияет на выбор вари­анта решения, которому стоит отдать предпочтение.

Выбор того или иного критерия зависит от ряда факторов:

Характера решаемой задачи;

Поставленных целей,

Совокупности ограничений,

Склонности к риску лиц, принимающих решение.

Следует отметить, что рассмотренные способы и приемы решения задач в условиях риска и неопределенности не ограничиваются перечисленными методами. В зависимости от конкретной ситуации в процессе анализа могут использоваться и другие методы, например, использование среднеквадратического отклонения и коэффициента вариации как меры риска.

1. ОБЩАЯ МЕТОДИКА ФОРМИРОВАНИЯ КРИТЕРИЕВ

Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1) Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу


Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число


7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:


Понятно, что такое определение оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

2. ФОРМИРОВАНИЕ НЕКОТОРЫХ ИЗВЕСТНЫХ КРИТЕРИЕВ-ЧАСТНЫЕ СЛУЧАИ ОБЩЕЙ МЕТОДИКИ

Критерий Байеса (, , , ).

1) Пусть А является матрицей выигрышей игрока А.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1). Следовательно, речь идет о принятии решения в условиях риска.

3) Полагаем l=n и матрицу В выбираем равной матрице А, т.е.

bij=aij для всех i=1,…,m и j=1,…,n.

4) Коэффициенты l1,…,ln, выбираем равными соответствующим вероятностям q1,…,qn, т.е. ll=qi, i=1,…,n. Этим самым игрок А выражает полное доверие к истинности распределения вероятностей q1,…,qn, состояний природы.

Из (1) следует, что коэффициенты lj, j=1,…,n удовлетворяют условию (3).

5) Показатель эффективности стратегии Аi по критерию Байеса обозначим через Вi и находим его по формуле (3):


Очевидно, что Вi – средневзвешенный выигрыш при стратегии Аi с весами q1,…,qn.

Если стратегию Аi трактовать как дискретную случайную величину, принимающую значения выигрышей при каждом состоянии природы, то вероятности этих выигрышей будут равны вероятностям состояний природы и тогда Вi есть математическое ожидание этой случайной величины (см. (6)).

6) Цена игры по критерию Байеса, обозначаемая нами через В, определяется по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Байеса является стратегия Аk, для которой показатель эффективности максимален:

Критерий Лапласа (, , , ).

2) Исходя из теоретических, либо из практических соображений, констатируется, что ни одному из возможных состояний природы Пj, j=1,…,n, нельзя отдать предпочтения. Потому все состояния природы считают равновероятностными, т.е. qj=n-1, j=1,…,n. Этот принцип называют принципом «недостаточного основания» Лапласа. Вероятности qj=n-1, j=1,…,n, удовлетворяют условию (1).

Поскольку вероятности состояний природы известны: qj=n-1, j=1,…,n, то мы находимся в ситуации принятия решения в условиях риска.

3) Пусть l=n, а в качестве матрицы В можно взять матрицу, получающуюся из матрицы А, если каждую строку последней заменить на произвольную перестановку ее элементов. В частности, можем положить В=А. В общем же случае элементы матрицы В имеют вид bij=aikj(i), i=1,…, m; j=1,…,n, где aik1(i), aik2(i),…,aikn(i) – некоторая перестановка элементов ai1, ai2,…,ain i-й строки матрицы А.

4) Пусть коэффициенты lj=n-1, j=1,…,n. Очевидно, они удовлетворяют условию (2).

Выбор коэффициентов lj, j=1,…,n, таким образом подтверждает полное доверие игрока А к принципу недостаточного основания Лапласа.

5) По формуле (3) показатель эффективности стратегии Аi по критерию Лапласа, обозначаемый нами через Li, равен:


7) Оптимальной стратегией Аk по критерию Лапласа является стратегия с максимальным показателем эффективности:

Заметим, что, как следует из (7) и (8), показатель эффективности Li будет максимальным тогда и только тогда, когда максимальной будет сумма , и потому в качестве показателя эффективности стратегии Аi можно рассмотреть число , а в качестве цены игры – число .

Тогда оптимальной будет стратегия, сумма выигрышей при которой максимальна.

Критерий Вальда ( – ).

1) Предположим, что А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую-либо статистическую информацию. Поэтому игрок А находится в ситуации принятия решения в условиях неопределенности.

3) Пусть l=1 и


4) Пусть коэффициент l1=1. Очевидно, условие (2) выполняется.

5) Обозначим показатель эффективности стратегии Аi по критерию Вальда через Wi. В силу (9) и значения коэффициента l1=1, по формуле (3) имеем:


Таким образом, показатель эффективности стратегии Аi по критерию Вальда есть минимальный выигрыш игрока А при применении им этой стратегии.

6) Цена игры по критерию Вальда, обозначим ее через W, находится по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Вальда является стратегия Аk с максимальным показателем эффективности:

Другими словами, оптимальной среди чистых стратегий по критерию Вальда считается та чистая стратегия, при которой минимальный выигрыш является максимальным среди минимальных выигрышей всех чистых стратегий. Таким образом, оптимальная стратегия по критерию Вальда гарантирует при любых состояниях природы выигрыш, не меньший максимина:


В силу (10), критерий Вальда является критерием крайнего пессимизма игрока А, а количественным выражением этого крайнего пессимизма является значение коэффициента l1, равное 1. Игрок А, принимая решение, действует по принципу наибольшей осторожности.

Хотя арабская пословица и гласит: «Кто боится собственной тени, тому нет места под солнцем», - тем не менее этот критерий уместен в тех случаях, когда игрок А не столько хочет выиграть, сколько не хочет проиграть. Использование принципа Вальда в обиходе подтверждается такими поговорками как «Семь раз отмерь – один раз отрежь», «Береженого Бог бережет», «Лучше синица в руках, чем журавль в небе».

Критерий Ходжа-Лемана .

1) Предположим, что матрицей выигрышей игрока А является матрица А.

2) Известны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Таким образом, игроку А надлежит принимать решение в условиях риска.

3) Пусть l=2,


· показатель эффективности стратегии Аi по критерию Байеса.

Матрица В примет вид


Очевидно, что эти коэффициенты удовлетворяют условию (2).

5) По формуле (3), с учетом (11), (12), и (13), показатель эффективности стратегии Аi по критерию Ходжа-Лемана равен:

Gi=libi1+l2bi2=(1-l)Wi+lBi=(1-l)aij+ i=1,…,m.

В правой части формулы (14) коэффициент lÎ есть количественный показатель степени доверия игрока А данному распределению вероятностей qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, а коэффициент (1-l) характеризует количественно степень пессимизма игрока А. Чем больше доверия игрока А данному распределению вероятностей состояний природы, тем меньше пессимизма и наоборот.

6) Цену игры по критерию Ходжа-Лемана находим по формуле (4):

7) Оптимальной стратегией по критерию Ходжа-Лемана является стратегия Аk с наибольшим показателем эффективности:

Отметим, что критерий Ходжа-Лемана является как-бы промежуточным критерием между критериями Байеса и Вальда. При l=1, из (14) имеем:Gi=Bi и потому критерий Ходжа-Лемана превращается в критерий Байеса. А при l=0, из (14): Gi=Wi и, следовательно, из критерия Ходжа-Лемана получаем критерий Вальда.

Критерий Гермейера .

1) Пусть матрица А является матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:


Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей


Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и, следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

Критерий произведений .

1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:

aij>0, i=1,…,m; j=1,…,n.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).

3) Пусть l=1 и


размера m x 1.

4) Пусть l1=1. Условие (2) выполняется.

5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен

.

6) Цена игры по критерию произведений вычисляется по формуле (4):

7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:

Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.

Максимаксный критерий (.-).

2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.

3) Пусть l=1 и


размера m x 1.

4) Коэффициент l1 выбираем равным 1: l1=1. При этом условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по максимаксному критерию обозначим через Мi и определим его по формуле (3) с учетом (18) и того, чтоl1=1:


Таким образом, показатель эффективности стратегии Аi по максимаксному критерию есть наибольший выигрыш при этой стратегии.

6) Цена игры по максимаксному критерию, обозначаемая нами через М, определяется по формуле (4):


Очевидно, что это есть наибольший элемент матрицы А.

7) Оптимальная стратегия по максимаксному критерию есть стратегия Аk с наибольшим показателем эффективности:

Из формулы (19) заключаем, что максимаксный критерий является критерием крайнего оптимизма игрока А. Количественно это выражается тем, что l1=1. Этот критерий противоположен критерию Вальда. Игрок А, пользуясь максимаксным критерием, предполагает, что природа П будет находиться в благоприятнейшем для него состоянии, и, как следствие отсюда, ведет себя весьма легкомысленно, с «шапкозакидательским» настроением, поскольку уверен в наибольшем выигрыше. Вместе с тем, в некоторых случаях этим критерием пользуются осознанно, например, когда перед игроком А стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобных ситуаций иллюстрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает» и т.п.

Оптимальная стратегия по максимальному критерию гарантирует игроку А возможность выигрыша, равного максимаксу.

.

Критерий пессимизма-оптимизма Гурвица с показателем оптимизма lÎ ( – ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую–либо надежную статистическую информацию.

Таким образом, решение о выборе оптимальной стратегии будет приниматься в условиях неопределенности.

3) Положим l=2. Элементы матрицы В


4) Коэффициенты l1 и l2 выбираем следующим образом:


В формуле (22) l - показатель оптимизма, а (1-l) – показатель пессимизма игрока А при выборе им оптимальной стратегии. Чем ближе к единице показатель оптимизма, тем ближе к нулю показатель пессимизма, и тем больше оптимизма и меньше пессимизма. И наоборот. Если l=0,5, то и 1-l=0,5, т.е. показатели оптимизма и пессимизма одинаковы. Это означает, что игрок А при выборе стратегии ведет себя нейтрально.

Таким образом, число l выбирается в пределах от 0 до 1 в зависимости от склонности игрока А к оптимизму или пессимизму.

6) Цена игры по критерию Гурвица Н определяется из формулы (5):


7) Оптимальная стратегия Аk по критерию Гурвица соответствует показателю эффективности

Критерий Гурвица является промежуточным между критерием Вальда и максимаксным критерием и превращается в критерий Вальда при l=0 и - в максимаксный критерий при l=1.

Обобщенный критерий Гурвица с коэффициентами l1,…, ln (, ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны. Так что решение принимается в условиях неопределенности.

3) Матрица В получается из матрицы А перестановкой элементов каждой ее строки в неубывающем порядке:

bi1£bi2£…£bin, i=1,…,m.

Таким образом, в 1-м столбце матрицы В стоят минимальные, а в n-м столбце максимальные выигрыши стратегий. Другими словами, в 1-м столбце матрицы В стоят показатели эффективности стратегий по критерию Вальда, а в n-м столбце – показатели эффективности стратегий по максимаксному критерию.

4) Коэффициенты l1,…, ln выбираются удовлетворяющими условиям (2) соответственно различной степени склонности игрока А к оптимизму. При этом показателем пессимизма игрока А называется число


где целая часть числа , а показателем оптимизма игрока А называется число


Очевидно, что lр+l0=1.

5) Показатель эффективности стратегии Аi по обобщенному критерию Гурвица определяется по формуле (3):


6) Цену игры по обобщенному критерию Гурвица определим по формуле (4):

7) Оптимальные стратегии находятся стандартно: Аk – оптимальная стратегия, если Gk=G.

Отметим, что обобщенный критерий Гурвица учитывает все выигрыши при каждой стратегии, что необходимо для более полной картины эффективности стратегий. Отметим также, что некоторые из приведенных выше критериев являются частными случаями обобщенного критерия Гурвица.

Отметим, что если В=А, то коэффициенты lj, j=1,…,n, можно формально интерпретировать как вероятности состояний природы и в, таком случае, обобщенный критерий Гурвица совпадает с критерием Байеса.

Если lj=n-1, j=1,…,n, то обобщенный критерий Гурвица превращается в критерий Лапласа.

Если l1=1, l2=…=ln=0, то обобщенный критерий Гурвица представляет собой критерий Вальда.

При l1=…=ln-1=0, ln=1, из обобщенного критерия Гурвица получаем максимаксный критерий.

Если l1=1-l, l2=…=ln-1=0, ln=l, где lÎ, то обобщенный критерий Гурвица является критерием Гурвица.

Если В=А и qi=p(Пj), j=1,…,n – вероятности состояний природы, удовлетворяющие условиям (1), то выбрав коэффициенты lj, j=1,…,n, следующим образом: l1=1-l+lq1, lj=lqj, j=2,…,n, где lÎ, мы из обобщенного критерия Гурвица получим критерий Ходжа Лемана.

3. ЗАДАЧА В УСЛОВИЯХ ПОЛНОЙ НЕОПРЕДЕЛЁННОСТИ

Допустим, инвестор принимает решение о строительстве жилья определенного типа в некотором месте. Инвестор действует в условиях неопределенности (информационной непрозрачности) на рынке жилья. Чтобы сформировать представление о ситуации на рынке жилья на момент завершения строительства ему необходимо учесть цены на недвижимость, конкуренцию на рынке жилья, соотношение предложения и спроса, курсы валют и многое другое. Статистические данные свидетельствуют о том, что одной из главных составляющих стоимости жилья является место его расположения.

Рассмотрим математическую модель данной ситуации. Мы имеем игру с природой, где игрок А – инвестор, природа П – совокупность возможных ситуаций на рынке жилья на момент завершения строительства, из которых можно сформировать, например, пять состояний П1, П2, П3, П4, П5 природы. Известны приближенные вероятности этих состояний q1=p(П1)»0,30; q2=p(П2)»0,20; q3=p(П3)»0,15; q4=p(П4)»0,10; q5=p(П5)»0,25. Предположим, что игрок А располагает четырьмя (чистыми) стратегиями А1, А2, А3, А4, представляющими собой выбор определенного места для постройки жилья. Множество этих мест ограничено градостроительными решениями, стоимостью земли и т.д. Инвестиционная привлекательность проекта определяется как процент прироста дохода по отношению к сумме капитальных вложений, оценка которых известна при каждой стратегии и каждом состоянии природы. Эти данные представлены в следующей матрице выигрышей игрока А:


размера 4 х 5, в последней, дополнительной строке которой указаны вероятности состояний природы. Матрица (24) не содержит доминируемых (в частности, дублируемых) строк и все ее элементы положительны.

Инвестору предстоит выбрать участок земли так, чтобы наиболее эффективно использовать капиталовложения.

Подсчитаем показатели эффективности стратегий

· по критериям Байеса, Гермейера и критерию произведений при условии, что инвестор А доверяет данному распределению вероятностей состояний природы,

· по критерию Лапласа, если инвестор А не доверяет данному распределению вероятностей состояний природы и не может отдать предпочтения ни одному из рассматриваемых состояний природы,

· по критерию Ходжа- Лемана с коэффициентом доверия к вероятностям состояний природы, например, l=0,4,

· по критерию Вальда, максимаксному критерию, критерию пессимизма-оптимизма Гурвица с показателем оптимизма, например, l=0,6, и по обобщенному критерию Гурвица с коэффициентами, например, l1=0,35; l2=0,24; l3=0,19; l4=0,13; l5=0,09.

Результаты подсчета показателей эффективности и оптимальные стратегии представлены в следующей таблице:

Таблица показателей эффективности и оптимальных стратегий

Стратегии

Критерии

Ходжа-Лемана

Гермейгера

Произ-ведений

Макси-максный

Обобщенный Гурвица с коэффиц

l1=0,35
l2=0,24
l3=0,19
l4=0,13
l5=0,09

Оптимал. стратегии


Заметим, что, поскольку, в критерии Ходжа- Лемана показатель доверия игрока А распределению вероятностей состояний, указанных в последней строке матрицы (24), равен l=0,4, то показатель пессимизма игрока А равен 1-l=0,6.

В критерии Гурвица показатель оптимизма игрока А равен l=0,4 и, следовательно, показатель его пессимизма также равен 1-l=0,6.

В обобщенном критерии Гурвица по формуле (23) показатель пессимизма

= 0,35+0,24+0,5×0,19=0,685

и, следовательно, показатель оптимизма l0=1-0,685=0,315.

Таким образом, во всех примененных критериях, учитывающих индивидуальные проявления игрока А к пессимизму и оптимизму, игрок А более склонен к пессимистической оценке ситуации, чем к оптимистической, примерно с одинаковыми показателями.

В результате применения девяти критериев мы видим, что в качестве оптимальной стратегии А1 выступает 3 раза, стратегия А3 – 6 раз и стратегия А4 – 1 раз. Поэтому, если у инвестора А нет никаких обоснованных серьезных возражений, то в качестве оптимальной можно рассматривать стратегию А3.

Неопределенность относительно состояния системы может быть вызвана двумя обстоятельствами: недостатком ясности, когда не известны все возможные состояния, и недостатком уверенности, когда все состояния известны, но нет возможности точно указать, какое именно реализуется.

Неопределенность также подразумевает отсутствие информации о вероятностном распределении состояний. В противном случае это относится к ситуации риска.

Каким же образом можно принимать решения в ситуации неопределенности?

Если неопределенность вызвана отсутствием ясности, то принять формализованное объективное решение практически не представляется возможным. Нельзя точно оценить альтернативы, когда неизвестно, что вообще может произойти. Следовательно, требуется если не устранить неопределенность, то хотя бы свести ее к недостатку уверенности. Это можно сделать двумя способами:

· либо исследовать явление, порождающее неопределенность, больше узнать про него и выявить все возможные состояния,

· либо принять допущение, ограничивающее множество возможных состояний (например, совокупностью всех известных состояний). Разумеется, такое упрощение отражается на надежности принимаемых решений, но часто оно является единственно возможным выходом.

Если же неопределенность вызвана невозможностью точно предсказать, какое состояние из числа возможных реализуется, то тут также есть два пути:

· либо применить формализованные методы принятия решений в условиях неопределенности, обеспечивающие оптимальный выбор на только основе имеющейся информации об исходах;

· либо попробовать привести все к ситуации риска, получив путем исследований или допущений информацию о вероятностном распределении исходов. Тогда становится возможным применение методов принятия решений в условиях риска, которые дают более взвешенные результаты, при условии, что предполагаемое распределение близко к реальному.

Одним из методов, позволяющих принимать решения в условиях неопределенности, являются так называемые «игры», исследуемые в рамках математической теории игр. Принципиально выделяют два основных вида таких игр:

стратегические игры и

игры с природой.

Аппарат стратегических игр применяется для принятия решений в условиях взаимодействия. Там неопределенность связана с действиями других лиц, которые целенаправленно стремятся максимизировать свой выигрыш. ЛПР не знает точно, что будут делать противники. Однако он может обоснованно предполагать, что они осознанно выбирают стратегии наилучшие для себя и наихудшие для других (в т.ч. и для нашего ЛПР). Методы стратегических игр позволяют выбрать оптимальную стратегию в условиях такого противодействия.

Если же целенаправленного противодействия нет, и неопределенность связана с объективными (независящими от воли конкретных субъектов) обстоятельствами, то применяется аппарат "игр с природой". При этом под "природой" не обязательно подразумевается живая или неживая природа (биосфера, атмосфера и т.д.). Это может быть рынок или иная совокупность субъектов, которые не конфликтуют с нашим ЛПР, а просто совершают непредсказуемые для него действия. Такая "природа" безразлична к выигрышу или проигрышу ЛПР и не стремится обратить его просчеты в сою пользу. Естественно, что логика принятия решений в таких условиях несколько отличается от логики стратегических игр.

Рассмотрим некоторые положения теории игр.

Теория игр –– это наука, изучающая стратегические решения людей, фирм, правительств и других агентов.

Стратегические решения –– это такие решения, которые принимаются с учетом действий других агентов и которые влияют на полезность других агентов.

Ситуации, в которых действия одних агентов оказывают влияние на других агентов, –– то есть такие ситуации, в которых агенты принимают стратегические решения, –– называют стратегическими взаимодействиями (или играми). Агентов, участвующих во данных взаимодействиях, называют игроками. Виды стратегических взаимодействий представлены на рис. 20.

Рис. 20. Виды стратегических взаимодействий.

Игры могут быть представлены в нормальной форме (матрица), когда принятие решений осуществляется одновременно, и в развернутой форме (дерево) – при последовательном принятии решений. Рассмотрим оба способа.

Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде. В этом случае ЛПР должен сделать выбор альтернативы (Аi), не имея точного представления о факторах внешней среды и их влияния на результат. В этих условиях исход, результат каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способен предвидеть ЛПР. Для предоставления и анализа результатов выбранных альтернативных стратегий используют матрицу решений, называемую также платежной матрицей, или матричной игрой . Пример матрицы приведен в табл. 2.

Таблица 2

A1, A2, A3 –альтернативные стратегии действий; S1, S2, S3 – состояние экономики (стабильность, спад, рост и др.); E11; E12; E13; E21; … E33; … – результаты решений.

Числа в ячейках матрицы представляют собой результаты реализации Eij стратегии Ai в условиях Sj. При этом в условиях риска вероятность наступления Sj известна – wj(Sj). Методы принятия решений в условиях риска используют теорию выбора, получившую название теории полезности. В соответствии с этой теорией ЛПР выбирает Ai из совокупности {Ai} (i = 1 … n), которая максимизирует ожидаемую стоимость его функции полезности E,j. В условиях риска при принятии решения основным моментом является определение вероятности наступления состояния среды Sj , т. е. степени риска. После определения вероятности wj(Sj) наступления состояния среды Sj, определяют ожидаемую стоимость реализации каждой альтернативы, которая представляет собой средневзвешенную стоимость E(Ai):

Отметим, что в рассматриваемых нами задачах на принятие решения в качестве исходов Е ij мы будем рассматривать показатели, которые желательно максимизировать - выигрыш, доход, прибыль. К ним применяется принцип "чем больше, тем лучше". Все принципы выбора оптимальной альтернативы будут сформулированы именно для таких показателей.

Если в матрице игры в качестве исходов надо представить показатели, которые подлежат минимизации - убытки, расходы, потери, то здесь возможны два пути:

1) представлять их в матрице виде отрицательных значений. Тогда можно без изменений использовать приведенные далее в книге формулы, операции сравнения и принципы определения оптимальной альтернативы;

2) представлять их в матрице в виде положительных значений. В этом случае необходимо поменять в приведенных в книге формулах: операции максимизации на минимизацию и наоборот, операции сравнения при определении оптимальных альтернатив с "больше" и "больше или равно" - на "меньше" и "меньше или равно", и наоборот.

Дерево решений применяют тогда, когда необходимо принимать последовательный ряд решений. Дерево решений – графический метод, позволяющий увязать точки принятия решения, возможные стратегии Ai, их последствия Ei,j с возможными факторами, условиями внешней среды. Построение дерева решений начинается с более раннего решения, затем изображаются возможные действия и последствия каждого действия (событие), затем снова принимается решение (выбор направления действия) и т. д., до тех пор, пока все логические последствия результатов не будут исчерпаны. Дерево решений строится с помощью пяти элементов:

1. Момент принятия решения.

2. Точка возникновения события.

3. Связь между решениями и событиями.

4. Вероятность наступления события (сумма вероятностей в каждой точке должна быть равна 1).

5. Ожидаемое значение (последствия) – количественное выражение каждой альтернативы, расположенное в конце ветви.

Простейшее решение представляет собой выбор из двух вариантов – «Да» или «Нет» (рис. 20).

Рис. 20. Простейшее дерево решений

После того как стратегическое взаимодействие формально описано, то есть задана игра, нужно эту игру решить. Что значит «решить игру»? 
Решить игру –– значит найти профиль стратегий, который будет сыгран. При этом мы считаем, что игроки ведут себя рационально.

При решении игр могут применяться различные концепции равновесия, как например,

1. Равновесие в доминирующих стратегиях.

2. Равновесие, получаемое исключением доминируемых стратегий.

3. Равновесие Нэша.

Рассмотрим первый случай.

Пусть имеется игра n лиц в нормальной форме, а (s 1 , . . . , s n) –– некоторый про- филь стратегий. Для любого i = 1, . . . , n положим s− = (s 1 ,...,s i-1 ,s i+1 ,...,s n).


Другими словами, s -i –– это набор стратегий всех игроков, кроме i-го, из профиля (s 1 ,...,s n). Множество всех возможных наборов стратегий всех игроков, кроме i-го, обозначим через S -i .

Таблица А

Пусть i = 2 (табл. А). Тогда для любого профиля стратегий (s 1 , s 2) через s -2 обозначается стратегия первого игрока s 1 .
Множество S -2 имеет в этой игре следующий вид: S -2 = {a 1 , a 2 }.

строго доминирующей , если для любой другой стратегии i-го игрока s′ i ∈ S i и любого набора s -i ∈ S -i стратегий остальных игроков выполняется неравенство

u i (s i , s -i) > ui(s′ i , s -i).

При любых стратегиях других игроков платеж, который получает игрок i, играя стратегию s i , больше, чем платеж, который он получает, играя стратегию s′ i .

В примере таблицы А

· стратегия a 1 первого игрока –– строго доминирующая, поскольку при любой стратегии второго игрока приносит первому игроку строго больший платеж, чем любая другая его стратегия.

· стратегия b 1 второго игрока –– строго доминирующая, поскольку при любой стратегии первого игрока приносит второму игроку строго больший платеж, чем любая другая его стратегия.

Стратегия i-го игрока s i ∈ S i называется слабо доминирующей , если для любой другой стратегии i-го игрока s′ i ∈ S i и любого набора s -i ∈ S -i стратегий остальных игроков выполняется неравенство

u i (s i , s -i) ⩾ u i (s′ i , s -i).


Слабо доминирующие стратегии должны удовлетворять чуть более слабому условию, чем строго доминирующие.

Если в таблице А исправить платеж второго игрока 2 на 7 (ячейка а 1, b 2), то стратегия b 1 для второго игрока будет являться уже не строго, а слабо доминирующей, так как есть еще одна стратегия b 2 , платеж которой равнозначный.

Профиль стратегий (s 1 , . . . , s n) называется равновесием в строго доминирующих стратегиях, если для каждого игрока i, i = 1, . . . , n, стратегия s i является строго доминирующей.

В таблице А профиль стратегий (a 1 ,b 1) является равновесием в строго доминирующих стратегиях, поскольку стратегии a 1 и b 1 –– строго доминирующие.

Аналогично, профиль стратегий (s 1 , . . . , s n) называется равновесием в слабо доминирующих стратегиях, если для каждого игрока i, i = 1, . . . , n, стратегия s i является слабо доминирующей.

Если у игрока в некоторой игре есть строго доминирующая стратегия, то есть все основания полагать, что он будет играть именно ее: если он сыграет эту стратегию, то его выигрыш будет максимален. Но игры, в которых у каждого игрока есть строго доминирующая стратегия, встречаются нечасто: равновесие в строго доминирующих стратегиях –– это концепция решения, подходящая не для всех игр.

Рассмотрим известный пример игры – дилемма заключенного .

Предыстория: полиция поймала двоих человек, подозреваемых в совершении ограбления, но у нее не хватает улик против них. Чтобы собрать улики, полиция развела подозреваемых по разным камерам, лишив их возможности обмениваться информацией, и устроила каждому допрос.

У каждого игрока есть две стратегии:

· промолчать

· пойти на сделку со следствием и сдать напарника.

Платежи игроков:

· если оба заключенных будут молчать, то полиция отправит каждого из них в тюрьму по мягкой статье на 1 год.

· если один заключенный выдаст второго, а второй будет молчать, то тот, против кого дали показания, отправится в тюрьму на 10 лет, а другой пойдет на свободу.

· если оба заключенных пойдут на сделку со следствием, то полиция сможет обвинить обоих в совершении ограбления, но каждому из них уменьшат срок до 5 лет.

Матрица игры:

Есть ли у игроков доминирующие стратегии?

У первого заключенного есть строго доминирующая стратегия –– стратегия «Предать».

У второго заключенного тоже есть строго доминирующая стратегия –– стратегия «Предать».

Профиль стратегий (Предать, Предать) –– это равновесие в строго доминирующих стратегиях. А также –– равновесие в слабо доминирующих стратегиях.

Говорят, что профиль стратегий s Парето-доминирует профиль стратегий s′, если:

u i (s) ⩾ u i (s′) для любого игрока i;

u i (s) > u i (s′) хотя бы для одного игрока i.

Профиль стратегий s∗ называется Парето-оптимальным , если не существует такого 
профиля s′, который Парето-доминирует s∗. Является ли равновесный профиль (Предать, Предать) Парето-оптимальным? Нет! Его Парето-доминирует профиль (Молчать, Молчать): если бы оба игрока промолчали, то каждый получил бы больший платеж, чем в равновесии. А другие профили стратегий Парето-оптимальны? Да. Равновесие в дилемме заключенного –– единственный профиль стратегий, который не является Парето-оптимальным!

Теперь рассмотрим равновесие путем исключения строго (или слабо) доминируемых стратегий.

2) Стратегия s i игрока i строго доминирует стратегию s′ i игрока i, если


u i (s i , s -i) > u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

2) Стратегия s i игрока i строго доминируется стратегией s′ i игрока i, если

u i (s i , s -i) < u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

Обозначение: s i ≺ s′ i .

3) Стратегия s i игрока i слабо доминирует стратегию s′ i игрока i, если


u i (s i , s -i) ⩾ u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

4) Стратегия s i игрока i слабо доминируется стратегией s′ i игрока i, если


u i (s i , s -i) ⩽ ui(s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

Обозначение: s i ≼ s′ i .

Стратегия s i игрока i называется строго доминируемой, если существует стратегия s′ i игрока i, которая строго доминирует стратегию s i .

Стратегия si игрока i называется слабо доминируемой, если существует стратегия s′ i игрока i, которая слабо доминирует стратегию s i .

Если у игрока есть строго доминируемая стратегия, то он, будучи рациональным, никогда не будет ее играть: она принесет ему заведомо меньше, чем некоторая другая его стратегия, которую он тоже может сыграть. Оба игрока понимают, что строго доминируемая стратегия ни при каких обстоятельствах не будет сыграна, поэтому в матричной записи игры мы можем исключить столбец или строку, соответствующие этой стратегии.

Рассмотрим игру

1. Исключим стратегию b 1 , так как b 2 ≺ b 3 .

2. Исключим стратегию a 1 , так как a 1 ≺ a 2 .

3. Исключим стратегию b 3 , так как b 3 ≺ b 1 .

Оставшийся профиль (a 2 , b 1) –– это равновесие, полученное исключением строго доминируемых стратегий.

Если в конечной игре (если множество возможных стратегий игрока конечно) в нормальной форме в результате последовательного исключения строго доминируемых стратегий остается матрица размера 1 × 1, то оставшийся профиль называется равновесием, получаемым исключением строго доминируемых стратегий.

Отметим, что:

· не все игры можно решить последовательным исключением строго доминируемых стратегий;

· порядок исключения строго доминируемых стратегий не имеет значения –– в каком бы порядке мы ни исключали такие стратегии, в результате придем к одному и тому же профилю;

· исключая слабо доминируемые стратегии в разном порядке, мы будем получать разные равновесия;

· если в игре есть равновесие в строго доминирующих стратегиях, то оно является и равновесием, получаемым исключением строго доминируемых стратегий;

· равновесие, получаемое исключением строго доминируемых стратегий,
не обязательно является равновесием в строго доминирующих стратегиях.

Равновесие Нэша – еще один тип равновесия, который может быть получен в матрице игры.

Профиль (s∗ 1 ,..., s∗ n) называется равновесием Нэша (NE), если для любого игрока i и любой его стратегии s i ∈ S i выполняется неравенство

u i (s∗ i , s∗ -i) ⩾ u i (s i , s∗ -i).

Иными словами, равновесием Нэша называется такой профиль стратегий, что никому из игроков не выгодно отклониться и сыграть другую стратегию при фиксированных стратегиях других игроков.

Равновесие Нэша названо так в честь известного математика Джона Нэша, лауреата Нобелевской премии по экономике 1994 года «За анализ равновесия в теории некооперативных игр» (совместно с Райнхардом Зельтеном и Джоном Харсаньи).

Мы можем сформулировать алгоритм нахождения равновесий Нэша в конечных играх двух игроков:

1. Для каждой стратегии второго игрока пометим точками наилучшие ответы первого игрока.

2. Для каждой стратегии первого игрока пометим звездочками наилучшие ответы второго игрока.

3. Профили, которые оказались помечены как точками, так и звездочками, являются равновесиями Нэша.

Пример: игра “Битва полов”

Постановка игры. Муж и жена независимо друг от друга решают, куда пойти вечером: на футбол или на балет. Связь между ними отсутствует, поэтому никто из них не может ничего узнать о том, куда решил пойти другой. Предпочтения супругов таковы, что вечером они хотели бы оказаться в одном месте, но жене больше нравится балет, а мужу –– футбол. Мужу лучше оказаться вместе с женой на балете, чем одному на футболе. Жене лучше пойти на футбол с мужем, чем пойти одной на балет.

У каждого из супругов есть выбор из 2 стратегий: пойти на футбол (Ф) или пойти на балет (Б). Предпочтения супругов можно задать с помощью следующей матрицы платежей:

В ответ на разные стратегии жены, мужу выгодно играть разные стратегии. То же самое верно и для жены.

В нашей матрице платежей получились две клеточки, в которых лучший выбор мужа при фиксированной стратегии жены совпал с лучшим выбором жены при фиксированной стратегии мужа.

Профили стратегий (Ф, Ф) и (Б, Б) в каком-то смысле лучше профилей стратегий (Ф, Б) и (Б, Ф). Если муж и жена оказались вместе на футболе или на балете, то никому из супругов по отдельности не выгодно уйти в другое место при неизменном решении второго остаться. Если супруги оказались вечером в разных местах, то каждому из них выгодно отклониться от выбранной первоначально стратегии.

Таким образом, полученные нами профили стратегий (Ф, Ф) и (Б, Б) являются равновесиями Нэша.

5.3. Методы выбора альтернатив в условиях риска и неопределенности.
Критерии выбора решений

В ситуации неопределенности есть несколько возможных состояний, и разные альтернативы при них обеспечивают различный выигрыш. То есть у нас есть несколько альтернатив, каждая из которых представляет собой набор значений исходов при соответствующих состояниях природы. Эти наборы нельзя просто математически сравнить "целиком", используя понятия "больше-меньше". Такую операцию можно провести только с отдельными членами данных наборов.

Если среди альтернатив нет строго или слабо доминирующих, это означает, что при разных состояниях природы наилучший результат показывают разные альтернативы. Каким же образом можно сравнить между собой эти наборы значений, и как выбрать оптимальный? Здесь на помощь приходят так называемые критерии выбора или просто критерии.

Основная идея любого критерия: заменить целый набор значений одним численным показателем, характеризующим данный набор с определенной точки зрения, и затем просто численно сравнить между собой эти показатели. У какого набора этот численный показатель окажется "лучше" (больше или меньше - зависит от вида критерия и ситуации), тот и будет считаться оптимальным по данному критерию.

Идея простая, но эффективная. Однако существенным недостатком любого критерия является "потеря информации". Из-за "сжатия" целого набора значений в одно единственное число, становятся заметны одни свойства (черты) набора и не видны другие.

Это все равно, что про человека судить только по принципу (т.е. критерию) "плохой" или "хороший". Здесь все качества, черты характера, взгляды человека описываются одним словом. Это легко запомнить, но здесь нет подробной информации. Более того, может происходить ее искажение. Во-первых, не все качества плохого человека могут быть хуже, чем у хорошего (он может быть здоровее или даже умнее). Во-вторых, значение "плохой" или "хороший" соответствует взгляду конкретного субъекта или группы, которые оценили человека по своим субъективным. И, вполне возможно, у других людей существуют свои подходы к присвоению значения "плохой" или "хороший". Поэтому такая оценка не является точной и универсальной.

В общем случае порядок применения критерия выглядит следующим образом:

1) на первом этапе выбирается критерий, по которому будет производиться выбор;

2) для каждой альтернативы рассчитывается значение выбранного критерия. По сути, в соответствие каждой альтернативе ставится одно численное значение критерия (ее количественная оценка);

3) альтернативы сравниваются путем обычного численного сравнения соответствующих им значений критериев;

4) по результатам сравнения оптимальной признается альтернатива, имеющая наилучшее значение критерия. Что считать "наилучшим" - максимальное или минимальное значение критерия - зависит от того, что показывают исходы альтернатив (прибыль, выигрыш или убытки, расходы), и по какому критерию производится сравнение.

Рассмотрим шесть основных критериев, которые можно использовать при сравнении альтернатив в ситуации неопределенности:

· критерий Вальда;

· критерий "максимакса";

· критерий Лапласа;

· критерий Сэвиджа;

· критерий Гурвица;

· обобщенный критерий Гурвица.

Критерий Вальда является самым "осторожным". Согласно ему, оптимальной альтернативой будет та, которая обеспечивает наилучший исход среди всех возможных альтернатив при самом плохом стечении обстоятельств.

Если исходы отражают подлежащие минимизации показатели (убытки, расходы, потери и т.д.), то критерий Вальда ориентируется на "минимакс" (минимум среди максимальных значений потерь всех альтернатив).

Если в качестве исходов альтернатив фигурируют показатели прибыли, дохода и других показателей, которые надо максимизировать (по принципу "чем больше, тем лучше"), то ищется "максимин" выигрыша (максимум среди минимальных выигрышей). Здесь и далее для всех критериев в тексте мы будем рассматривать именно такой случай, когда исход показывает некий выигрыш.

По критерию Вальда оценкой i -й альтернативы является ее наименьший выигрыш:

W i = min(x ij ), j = 1..M

Оптимальной признается альтернатива с максимальным наихудшим выигрышем:

А* = А k , W k = max(W i ), i = 1..N

Пример применения критерия Вальда

Есть два проекта Х 1 и Х 2 , которые при трех возможных сценариях развития региона (j=1..3 ) обеспечивают разную прибыль. Значения прибыли приведены в таблице 2.2. Необходимо выбрать проект для реализации.

Таблица 3

Исходные данные

Если выбор оптимального проекта осуществляется по критерию Вальда, то ЛПР должен выполнить следующие действия:

1. Найти минимальные исходы для каждой альтернативы. Это и будут значения критерия Вальда:

W 1 = min(x 1j), j = 1..3 => W 1 = min(45, 25, 50) = 25

W 2 = min(x 2j), j = 1..3 => W 2 = min(20, 60, 25) = 20

2. Сравнить значения критерия Вальда и найти наибольшую величину. Альтернатива с максимальным значением критерия будет считаться оптимальной:

25 > 20 => W 1 > W 2 => X* = X 1

Если бы решение принималось только по критерию Вальда, ЛПР выбрал для реализации проект Х 1 , поскольку прибыль, которую обеспечит данный проект при самом плохом развитии ситуации, выше.

Выбрав оптимальную альтернативу по критерию Вальда, ЛПР гарантирует себе, что при самом плохом стечении обстоятельств он не получит меньше, чем значение критерия. Поэтому данный показатель еще называют критерием гарантированного результата .

Основной проблемой критерия Вальда является его излишняя пессимистичность, и, как следствие, не всегда логичный результат. Так, например, при выборе по данному критерию между альтернативами А{100; 500} и В{90; 1000} следует остановиться на варианте А . Однако в жизни логичнее было бы выбрать В , так как в худшем случае В лишь немного хуже А , тогда как при хорошем стечении обстоятельств В обеспечивает гораздо больший выигрыш.

Диаметральной противоположностью критерия Вальда является так называемый критерий "максимакса". Если Вальд отражал взгляд предельного пессимиста, то "максимакс" соответствует отношению крайнего оптимизма. Все внимание уделяется только наилучшим исходам, поэтому оценкой i -й альтернативы по данному критерию является ее наибольший выигрыш М i :

М i = mах(x ij ), j = 1..M

Оптимальной считается альтернатива с максимальным наибольшим выигрышем:

Х* = Х k , М k = max(М i ), i = 1..N

Пример применения критерия "максимакса"

В условиях примера из табл. 3 действия ЛПР, использующего критерий "максимакса" для принятия решения, будут следующие:

1. Найти максимальные исходы для каждой альтернативы:

М 1 = max(x 1j), j = 1..3 => М 1 = max(45, 25, 50) = 50

М 2 = max(x 2j), j = 1..3 => М 2 = max(20, 60, 25) = 60

2. Сравнить найденные значения и определить альтернативу с максимальной величиной критерия:

50 < 60 => М 1 < М 2 => X* = X 2

По критерию "максимакса" оптимальным является проект Х 2 ., который может обеспечить наибольшую прибыль при наилучшем стечении обстоятельств.

Критерий "максимакса" не учитывает никакие иные исходы, кроме самых лучших. Поэтому его применение, во-первых, может быть весьма опасным, и, во-вторых, также как и критерий Вальда он может приводить к нелогичным решениям. Например, среди альтернатив А{-100; 0; 500} и В{200; 300; 400} с позиции "максимакса" лучшей является А , однако она несет в себе и опасность убытков (-100 ), и вообще все исходы, кроме лучшего намного уступают В . Поэтому практическое применение критерия "максимакса" весьма ограничено.

Критерий Лапласа основан на принципе недостаточного обоснования . Поскольку в рамках информационного подхода в ситуации неопределенности вероятности состояний неизвестны, то нет оснований утверждать, что они различны. Поэтому можно допустить, что они одинаковы.

По критерию Лапласа в качестве оценки альтернативы используется средний выигрыш:

Оптимальной является альтернатива с максимальным средним выигрышем:

Х* = Х k , L k = max(L i ), i = 1..N

Пример применения критерия Лапласа

Для условий примера из табл. 3 использование критерия Лапласа будет выглядеть следующим образом:

1. Найти среднее арифметическое значение исходов по каждому проекту. Оно является оценкой альтернативы по критерию Лапласа:

L 1 = (x 11 +x 12 +x 13)/3 = (45+25+50)/3 = 40

L 2 = (x 21 +x 22 +x 23)/3 = (20+60+25)/3 = 35

2. Сравнить рассчитанные величины и найти альтернативу с максимальным значением критерия:

40 > 35 => L 1 > L 2 => X* = X 1

По критерию Лапласа оптимальным является проект Х 1 , у которого наибольшая средняя прибыль.

Среднее значение является достаточно популярной мерой в условиях неопределенности и даже риска, однако оно не учитывает разброс результатов относительно этого значения. Так, например, альтернативы А{400; 600} и В{0; 1000} являются эквивалентными по критерию Лапласа (L A = L B = 500 ) , однако альтернатива В более "рискованна", так как предполагает возможность при плохом стечении обстоятельств не получить ничего.

Критерий Сэвиджа несколько отличается от всех остальных. Оценка альтернатив производится не по исходной матрице, а по так называемой "матрице сожалений" или, как ее еще называют в некоторых источниках, "матрице рисков" .

Для произвольной альтернативы и конкретного состояния природы величина "сожаления" равна разнице между тем, что обеспечивает данная альтернатива, и тем, сколько максимально можно выиграть при данном состоянии. С экономической точки зрения величину "сожаления" можно трактовать как недополученный выигрыш (или упущенную выгоду) по сравнению с максимально возможным при данном состоянии природы.

Рассмотрим, каким образом следует выбирать наилучшую альтернативу, руководствуясь критерием Сэвиджа.

Выбор оптимальной стратегии в условиях риска и неопределенности предполагает рассмотрение различных критериев оптимальности, разработанный в рамках так называемой "игры с природой". Данная модель предполагает сознательную действие только одного участника - так называемого "игрока", которым в инвестиционном анализе есть инвестор, в пределах неподконтрольной его объективной реальности. При этом термином "природа" описывается совокупность объективных факторов, которые меняются независимо от желания игрока-инветостора, но имеют определяющее влияние на принятие им инвестиционных ришень.В инвестиционном анализе это - состояние инвестиционного рынка.

Инвестор имеет прогнозную оценку возможных вариантов комбинации этих факторов (состояний инвестиционного рынка (П.)), которые возникают случайно независимо от его действий. В некоторых случаях прогнозы могут содержать оценку вероятностей возникновения этих состояний (р), сумма которых для всех возможных вариантов развития инвестиционной ситуации равен 1.

Инвестор разрабатывает варианты возможных инвестиционных стратегий (А) и осуществляет оценку возможной доходности инвестиций для каждой стратегии и при каждом варианте состояния состояния инвестиционного рынка

На основе этой информации может быть сформирована так называемая матрица выигрышей (таблице. 11.1).

Таблица 11.1

Матрица выигрышей

Разница между максимальным выигрышем игрока при данном состоянии природы (тах (и])) и выигрышем определенной стратегии поведения игрока, которая может быть реализована при этом состоянии природы называется риском стратегии А. при состоянии природы П:

ту = тахС ^) _ аг]. (11.1)

Таким образом, риск является частью крупнейшего инвестиционного дохода при данном состоянии инвестиционного рынка, инвестор не получает в случае использования несовершенной инвестиционной стратегии.

Для рисков можно построить матрицу рисков, аналогичную по форме к матрице выигрышей.

Перед инвестором стоит задача выбора среди множества возможных инвестиционных стратегий оптимальной.

Для выбора оптимальной инвестиционной стратегии в ситуации неопределенности (когда не известны вероятности) используются следующие критерии:

Критерий максимакс - критерий крайнего оптимизма, согласно которому избирается инвестиционная стратегия, обеспечивающая максимальный выигрыш (доход) среди всех максимальных выигрышей, выделенных для каждого из возможных состояний инвестиционного рынка;

Критерий Вальда - так называемый "критерий пессимиста", согласно которому предполагается, что от любого решения следует ожидать худших последствий, а, следовательно, нужно найти такой вариант, при котором худший результат будет относительно лучше другие плохие результаты. То есть находится худший результат для каждого состояния инвестиционного рынка, а затем из них избирается инвестиционная стратегия с лучшим результатом среди них;

Критерий Сэвиджа - критерий минимаксного риска, аналогично критерию Вальда, но предусматривает анализ выбор по данным матрицы рисков;

Критерий Гурвица - максиминной-максимаксний критерий, по которому при выборе инвестиционной стратегии рекомендует выбирать альтернативу с максимальным средним результатом (при этом действует негласное предположение об одинаковой вероятность возникновения для всех возможных состояний инвестиционного рынка).

Для выбора оптимальной стратегии в условиях риска используются следующие критерии:

Критерий математического ожидания - предусматривает избрание инвестиционной стратегии, для которой средний взвешенный по вероятности выигрыш (математическое ожидание выигрыша, М) является максимальным:

мг = Хa, o Pj-> max; (11.2)

Критерий Лапласа - критерий максимизации взвешенного среднего показателя оптимальности стратегии, по которому при примерно одинаковой вероятности наступления событий оптимальной является стратегия, для которой суммарный выигрыш по всем возможным состояниями инвестиционной среды является максимальным. Именно этот критерий положен в основу сравнительной оценки эффективности проектов по критерию чистой текущей стоимости.

Окончательный выбор оптимальной инвестиционной стратегии осуществляется на основе обобщения результатов оценки по указанным выше критериям. При этом целесообразно принимать к реализации стратегии, которая является оптимальной по большинству критериев.